133 research outputs found

    Model and Algorithm Selection in Statistical Learning and Optimization.

    Get PDF
    Modern data-driven statistical techniques, e.g., non-linear classification and regression machine learning methods, play an increasingly important role in applied data analysis and quantitative research. For real-world we do not know a priori which methods will work best. Furthermore, most of the available models depend on so called hyper- or control parameters, which can drastically influence their performance. This leads to a vast space of potential models, which cannot be explored exhaustively. Modern optimization techniques, often either evolutionary or model-based, are employed to speed up this process. A very similar problem occurs in continuous and discrete optimization and, in general, in many other areas where problem instances are solved by algorithmic approaches: Many competing techniques exist, some of them heavily parametrized. Again, not much knowledge exists, how, given a certain application, one makes the correct choice here. These general problems are called algorithm selection and algorithm configuration. Instead of relying on tedious, manual trial-and-error, one should rather employ available computational power in a methodical fashion to obtain an appropriate algorithmic choice, while supporting this process with machine-learning techniques to discover and exploit as much of the search space structure as possible. In this cumulative dissertation I summarize nine papers that deal with the problem of model and algorithm selection in the areas of machine learning and optimization. Issues in benchmarking, resampling, efficient model tuning, feature selection and automatic algorithm selection are addressed and solved using modern techniques. I apply these methods to tasks from engineering, music data analysis and black-box optimization. The dissertation concludes by summarizing my published R packages for such tasks and specifically discusses two packages for parallelization on high performance computing clusters and parallel statistical experiments

    OpenML: networked science in machine learning

    Full text link
    Many sciences have made significant breakthroughs by adopting online tools that help organize, structure and mine information that is too detailed to be printed in journals. In this paper, we introduce OpenML, a place for machine learning researchers to share and organize data in fine detail, so that they can work more effectively, be more visible, and collaborate with others to tackle harder problems. We discuss how OpenML relates to other examples of networked science and what benefits it brings for machine learning research, individual scientists, as well as students and practitioners.Comment: 12 pages, 10 figure

    Multilabel Classification with R Package mlr

    Full text link
    We implemented several multilabel classification algorithms in the machine learning package mlr. The implemented methods are binary relevance, classifier chains, nested stacking, dependent binary relevance and stacking, which can be used with any base learner that is accessible in mlr. Moreover, there is access to the multilabel classification versions of randomForestSRC and rFerns. All these methods can be easily compared by different implemented multilabel performance measures and resampling methods in the standardized mlr framework. In a benchmark experiment with several multilabel datasets, the performance of the different methods is evaluated.Comment: 18 pages, 2 figures, to be published in R Journal; reference correcte

    Frequency estimation by DFT interpolation: a comparison of methods

    Full text link
    This article comments on a frequency estimator which was proposed by [6] and shows empirically that it exhibits a much larger mean squared error than a well known frequency estimator by [8]. It is demonstrated that by using a heuristical adjustment [2] the performance can be greatly improved. Furthermore, references to two modern techniques are given, which both nearly attain the Cramér-Rao bound for this estimation problem

    Decomposing Global Feature Effects Based on Feature Interactions

    Full text link
    Global feature effect methods, such as partial dependence plots, provide an intelligible visualization of the expected marginal feature effect. However, such global feature effect methods can be misleading, as they do not represent local feature effects of single observations well when feature interactions are present. We formally introduce generalized additive decomposition of global effects (GADGET), which is a new framework based on recursive partitioning to find interpretable regions in the feature space such that the interaction-related heterogeneity of local feature effects is minimized. We provide a mathematical foundation of the framework and show that it is applicable to the most popular methods to visualize marginal feature effects, namely partial dependence, accumulated local effects, and Shapley additive explanations (SHAP) dependence. Furthermore, we introduce a new permutation-based interaction test to detect significant feature interactions that is applicable to any feature effect method that fits into our proposed framework. We empirically evaluate the theoretical characteristics of the proposed methods based on various feature effect methods in different experimental settings. Moreover, we apply our introduced methodology to two real-world examples to showcase their usefulness
    • …
    corecore