581 research outputs found
A feature-based comparison of local search and the Christofides algorithm for the travelling salesperson problem
Understanding the behaviour of well-known algorithms for classical NP-hard optimisation problems is still a difficult task. With this paper, we contribute to this research direction and carry out a feature based comparison of local search and the well-known Christofides approximation algorithm for the Traveling Salesperson Problem. We use an evolutionary algorithm approach to construct easy and hard instances for the Christofides algorithm, where we measure hardness in terms of approximation ratio. Our results point out important features and lead to hard and easy instances for this famous algorithm. Furthermore, our cross-comparison gives new insights on the complementary benefits of the different approaches.Samadhi Nallaperuma, Markus Wagner, Frank Neumann, Bernd Bischl, Olaf Mersmann, Heike Trautmannhttp://www.sigevo.org/foga-2013
Characterization of ion-beam-sputtered AlF thin films for gravitational-wave interferometers
Thermal noise in amorphous coatings is a limitation for a wide range of precision experiments such
as gravitational-wave detectors (GWDs). Mirrors for GWDs are composed of multiple thin layers
of dielectric materials deposited on a substrate: the stack is made of layers with a high refractive
index interleaved with layers of a low refractive index. The goal is to obtain high reflectivity and
low thermal noise. In this paper we report on the optical and mechanical properties of ion-beamsputtered aluminium fluoride (AlF3) thin films which have one of the lowest refractive index among
the known coating materials and we discuss their application in current and future GWDs
Recommended from our members
All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant events have been found by either the unmodeled search or the cosmic string search. We thus present the search sensitivities for a variety of signal waveforms and report upper limits on the source rate density as a function of the characteristic frequency of the signal. These upper limits are a factor of 3 lower than the first observing run, with a 50% detection probability for gravitational-wave emissions with energies of ∼10-9 Mc2 at 153 Hz. For the search dedicated to cosmic string cusps we consider several loop distribution models, and present updated constraints from the same search done in the first observing run
Recommended from our members
Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs
When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates ⪆100 Gpc-3 yr-1 for e > 0.1, assuming a black hole mass spectrum with a power-law index ≲2
Modeling house price dynamics with heterogeneous speculators
This paper investigates the impact of speculative behavior on house price dynamics. Speculative demand for housing is modeled using a heterogeneous agent approach, whereas ‘real’ demand and housing supply are represented in a standard way. Together, real and speculative forces determine excess demand in each period and house price adjustments. Three alternative models are proposed, capturing in different ways the interplay between fundamental trading rules and extrapolative trading rules, resulting in a 2D, a 3D, and a 4D nonlinear discretetime dynamical system, respectively. While the destabilizing effect of speculative behavior on the model’s steady state is proven in general, the three specific cases illustrate a variety of situations that can bring about endogenous dynamics, with lasting and significant price swings around the ‘fundamental ’ price, as we have seen in many real markets
- …