63 research outputs found

    Differential effects of negative emotion on memory for items and associations, and their relationship to intrusive imagery

    Get PDF
    A crucial aspect of episodic memory formation is the way in which our experiences are stored within a coherent spatio-temporal context. We review research that highlights how the experience of a negative event can alter memory encoding in a complex manner, strengthening negative items but weakening associations with other items and the surrounding context. Recent evidence suggests that these opposing effects can occur through amygdala up-modulation to facilitate item encoding, while the hippocampal provision of contextual binding is down-modulated. We consider how these characteristics of memory for negative events might contribute to the development and maintenance of distressing intrusive imagery in posttraumatic stress disorder, and how they should influence therapeutic interventions

    Generation of superoxide and singlet oxygen from α-tocopherolquinone and analogues.

    Get PDF
    Three potential routes to generation of reactive oxygen species from a tocopherolquinone have been identified. The quinone of the water-soluble vitamin E analogue Trolox C (Trol-Q) is reduced by hydrated electron and isopropanol a hydroxyalkyl radical, and the resulting semiquinone reacts with molecular oxygen to form superoxide with a second order rate constant of 1.3 x 108 dm3 mol-1 s-1, illustrating the potential for redox cycling. Illumination (UV-A, 355 nm) of the quinone of 2,2,5,7,8-pentamethyl-6-hydroxychromanol (PMHC-Q) leads to a reactive short-lived (ca 10-6 s) triplet state, able to oxidise tryptophan with a second order rate constant greater than 109 dm3 mol-1 s-1. The triplet states of these quinones sensitize singlet oxygen formation with quantum yields of about 0.8. Such potentially damaging reactions of a tocopherolquinone may in part account for the recent findings that high levels of dietary vitamin E supplementation lack any beneficial effect and may lead to slightly enhanced levels of overall mortality

    Reduced Memory Coherence for Negative Events and Its Relationship to Posttraumatic Stress Disorder

    Get PDF
    Posttraumatic stress disorder (PTSD) is characterized by disruptions in memory, including vivid sensory images of the trauma that are involuntarily reexperienced. However, the extent and nature of disruptions to deliberate memory for trauma remain controversial. A unitary account posits that all aspects of memory for a traumatic event are strengthened. In contrast, a dual-representation account proposes up-modulation of sensory and affective representations of the negative content and down-modulation of hippocampal representations of the context in which the event occurred. We take a neuroscientific approach and review the literature concerning the mechanisms required to produce coherent episodic memories and how they are affected in experiments involving negative content. We find, in healthy volunteers, that negative content can reduce associative binding and the coherence of episodic memories. Finally, we bring these findings together with the literature on PTSD to highlight how similar associative mechanisms are affected in patients, consistent with hippocampal impairment, supporting a dual-representation view of disrupted memory coherence

    Behavioral evidence for pattern separation in human episodic memory

    Get PDF
    An essential feature of episodic memory is the ability to recall the multiple elements relating to one event from the multitude of elements relating to other, potentially similar events. Hippocampal pattern separation is thought to play a fundamental role in this process, by orthogonalizing the representations of overlapping events during encoding, to reduce interference between them during the process of pattern completion by which one or other is recalled. We introduce a new paradigm to test the hypothesis that similar memories, but not unrelated memories, are actively separated at encoding. Participants memorized events which were either unique or shared a common element with another event (paired “overlapping” events). We used a measure of dependency, originally devised to measure pattern completion, to quantify how much the probability of successfully retrieving associations from one event depends on successful retrieval of associations from the same event, an unrelated event or the overlapping event. In two experiments, we saw that within event retrievals were highly dependent, indicating pattern completion; retrievals from unrelated events were independent; and retrievals from overlapping events were antidependent (i.e., less than independent), indicating pattern separation. This suggests that representations of similar (overlapping) memories are actively separated, resulting in lowered dependency of retrieval performance between them, as would be predicted by the pattern separation account

    Negative Emotional Content Disrupts the Coherence of Episodic Memories

    Get PDF
    Events are thought to be stored in episodic memory as coherent representations, in which the constituent elements are bound together so that a cue can trigger reexperience of all elements via pattern completion. Negative emotional content can strongly influence memory, but opposing theories predict strengthening or weakening of memory coherence. Across a series of experiments, participants imagined a number of person-location-object events with half of the events including a negative element (e.g., an injured person), and memory was tested across all within event associations. We show that the presence of a negative element reduces memory for associations between event elements, including between neutral elements encoded after a negative element. The presence of a negative element reduces the coherence with which a multimodal event is remembered. Our results, supported by a computational model, suggest that coherent retrieval from neutral events is supported by pattern completion, but that negative content weakens associative encoding which impairs this process. Our findings have important implications for understanding the way traumatic events are encoded and support therapeutic strategies aimed at restoring associations between negative content and its surrounding context

    Negative affect impairs associative memory but not item memory.

    Get PDF
    The formation of associations between items and their context has been proposed to rely on mechanisms distinct from those supporting memory for a single item. Although emotional experiences can profoundly affect memory, our understanding of how it interacts with different aspects of memory remains unclear. We performed three experiments to examine the effects of emotion on memory for items and their associations. By presenting neutral and negative items with background contexts, Experiment 1 demonstrated that item memory was facilitated by emotional affect, whereas memory for an associated context was reduced. In Experiment 2, arousal was manipulated independently of the memoranda, by a threat of shock, whereby encoding trials occurred under conditions of threat or safety. Memory for context was equally impaired by the presence of negative affect, whether induced by threat of shock or a negative item, relative to retrieval of the context of a neutral item in safety. In Experiment 3, participants were presented with neutral and negative items as paired associates, including all combinations of neutral and negative items. The results showed both above effects: compared to a neutral item, memory for the associate of a negative item (a second item here, context in Experiments 1 and 2) is impaired, whereas retrieval of the item itself is enhanced. Our findings suggest that negative affect impairs associative memory while recognition of a negative item is enhanced. They support dual-processing models in which negative affect or stress impairs hippocampal-dependent associative memory while the storage of negative sensory/perceptual representations is spared or even strengthened

    EPS mid-career prize 2018: Inference within episodic memory reflects pattern completion

    Get PDF
    Recollection of episodic memories is a process of reconstruction where coherent events are inferred from subsets of remembered associations. Here, we investigated the formation of multielement events from sequential presentation of overlapping pairs of elements (people, places, and objects/animals), interleaved with pairs from other events. Retrievals of paired associations from a fully observed event (e.g., AB, BC, AC) were statistically dependent, indicating a process of pattern completion, but retrievals from a partially observed event (e.g., AB, BC, CD) were not. However, inference for unseen "indirect" associations (i.e., AC, BD or AD) from a partially observed event showed strong dependency with each other and with linking direct associations from that event. In addition, inference of indirect associations correlated with the product of performance on the linking direct associations across events (e.g., AC with ABxBC) but not on the non-linking association (e.g., AC with CD). These results were seen across three experiments, with greater differences in dependency between indirect and direct associations when they were separately tested, but similar results following single and repeated presentations of the direct associations. The results could be accounted for by a simple auto-associative network model of hippocampal memory function. Our findings suggest that pattern completion supports recollection of fully observed multielement events and the inference of indirect associations in partly observed multielement events, mediated via the directly observed linking associations (although the direct associations themselves were retrieved independently). Together with previous work, our results suggest that associative inference plays a key role in reconstructive episodic memory and does so through hippocampal pattern completion

    Medial Prefrontal Cortex: Adding Value to Imagined Scenarios

    Get PDF
    The medial prefrontal cortex (mPFC) is consistently implicated in the network supporting autobiographical memory. Whereas more posterior regions in this network have been related to specific processes, such as the generation of visuospatial imagery or the association of items and contexts, the functional contribution of the mPFC remains unclear. However, the involvement of mPFC in estimation of value during decision-making suggests that it might play a similar role in memory. We investigated whether mPFC activity reflects the subjective value of elements in imagined scenarios. Participants in an MRI scanner imagined scenarios comprising a spatial context, a physiological state of need (e.g., thirst), and two items that could be congruent (e.g., drink) or incongruent (e.g., food) with the state of need. Memory for the scenarios was tested outside the scanner. Our manipulation of subjective value by imagined need was verified by increased subjective ratings of value for congruent items and improved subsequent memory for them. Consistent with our hypothesis, fMRI signal in mPFC reflected the modulation of an item's subjective value by the imagined physiological state, suggesting the mPFC selectively tracked subjective value within our imagination paradigm. Further analyses showed uncorrected effects in non-mPFC regions, including increased activity in the insula when imagining states of need, the caudate nucleus when imagining congruent items, and the anterior hippocampus/amygdala when imagining subsequently remembered items. We therefore provide evidence that the mPFC plays a role in constructing the subjective value of the components of imagined scenarios and thus potentially in reconstructing the value of components of autobiographical recollection

    Location-dependent threat and associated neural abnormalities in clinical anxiety

    Get PDF
    Anxiety disorders are characterized by maladaptive defensive responses to distal or uncertain threats. Elucidating neural mechanisms of anxiety is essential to understand the development and maintenance of anxiety disorders. In fMRI, patients with pathological anxiety (ANX, n = 23) and healthy controls (HC, n = 28) completed a contextual threat learning paradigm in which they picked flowers in a virtual environment comprising a danger zone in which flowers were paired with shock and a safe zone (no shock). ANX compared with HC showed 1) decreased ventromedial prefrontal cortex and anterior hippocampus activation during the task, particularly in the safe zone, 2) increased insula and dorsomedial prefrontal cortex activation during the task, particularly in the danger zone, and 3) increased amygdala and midbrain/periaqueductal gray activation in the danger zone prior to potential shock delivery. Findings suggest that ANX engage brain areas differently to modulate context-appropriate emotional responses when learning to discriminate cues within an environment

    Time-resolved nanosecond fluorescence lifetime imaging and picosecond infrared spectroscopy of combretastatin A-4 in solution and in cellular systems

    Get PDF
    Fluorescence lifetime images of intrinsic fluorescence obtained with two-photon excitation at 630 nm are shown following uptake of a series of E-combretastatins into live cells, including human umbilical vein endothelial cells (HUVECs) that are the target for the anticancer activity of combretastatins. Images show distribution of the compounds within the cell cytoplasm and in structures identified as lipid droplets by comparison with images obtained following Nile red staining of the same cells. The intracellular fluorescent lifetimes are generally longer than in fluid solution as a consequence of the high viscosity of the cellular environment. Following incubation the intracellular concentrations of a fluorinated derivative of E combretastatin A4 in HUVECs are up to between 2 and 3 orders of magnitude higher than the concentration in the surrounding medium. Evidence is presented to indicate that at moderate laser powers (up to 6 mW) it is possible to isomerize up to 25% of the combretastatin within the femtolitre focal volume of the femtosecond laser beam. This suggests that it may be possible to activate the E-combretastatin (with low cellular toxicity) to the Z-isomer with high anticancer drug activity using two-photon irradiation. The isomerization of Z- and E-combretastatins by 266 nm irradiation has been probed by ultrafast time-resolved infrared spectroscopy. Results for the E-isomer show a rapid loss of excess vibrational energy in the excited state with a lifetime of 7 ps, followed by a slower process with a lifetime of 500 ps corresponding to the return to the ground state as also determined from the fluorescence lifetime. In contrast the Z-isomer, whilst also appearing to undergo a rapid cooling of the initial excited state, has a much shorter overall excited state lifetime of 14 ps
    • …
    corecore