63 research outputs found

    Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium

    Get PDF
    © 2018, © 2018 The Author(s). Published by Taylor & Francis. Heavy metals are highly toxic elements that contaminate the global food supply and affect human and wildlife health. Purification technologies are often too expensive or not practically applicable for large-scale implementation, especially in impoverished nations where heavy metal contamination is widespread. Lactobacillus rhamnosus GR-1 (LGR-1) was shown in previous work to reduce heavy metal bioaccumulation in a Tanzanian cohort of women and children through indeterminant mechanisms. Here, it was hypothesized that LGR-1 could sequester the heavy metals lead (Pb) and cadmium (Cd), thereby reducing their absorption across intestinal epithelium. LGR-1 and other lactobacilli significantly reduced the amount of Pb and Cd in solution at all concentrations tested (0.5 mg/L–50 mg/L) and exhibited sustained binding profiles over a 48-hour period. Relative binding efficiency of LGR-1 decreased as Pb concentration increased, with an absolute minimum binding threshold apparent at concentrations of 2 mg/L and above. Electron microscopy revealed that Pb formed irregular cell-surface clusters on LGR-1, while Cd appeared to form intracellular polymeric clusters. Additionally, LGR-1 was able to significantly reduce apical-to-basolateral translocation of Pb and Cd in a Caco-2 model of the intestinal epithelium. These findings demonstrate the absorbent properties of LGR-1 can immobilize Pb and Cd, effectively reducing their translocation across the intestinal epithelium in vitro. Oral administration of heavy metal-binding Lactobacillus spp. (many of which are known human symbionts and strains of established probiotics) may offer a simple and effective means to reduce the amount of heavy metals absorbed from foods in contaminated regions of the world

    A Multi-Platform Metabolomics Approach Identifies Highly Specific Biomarkers of Bacterial Diversity in the Vagina of Pregnant and Non-Pregnant Women

    Get PDF
    Bacterial vaginosis (BV) increases transmission of HIV, enhances the risk of preterm labour, and is associated with malodour. Clinical diagnosis often relies on microscopy, which may not reflect the microbiota composition accurately. We use an untargeted metabolomics approach, whereby we normalize the weight of samples prior to analysis, to obtained precise measurements of metabolites in vaginal fluid. We identify biomarkers for BV with high sensitivity and specificity (AUC = 0.99) in a cohort of 131 pregnant and non-pregnant Rwandan women, and demonstrate that the vaginal metabolome is strongly associated with bacterial diversity. Metabolites associated with high diversity and clinical BV include 2-hydroxyisovalerate and γ-hydroxybutyrate (GHB), but not succinate, which is produced by both Lactobacillus crispatus and BV-associated anaerobes in vitro. Biomarkers associated with high diversity and clinical BV are independent of pregnancy status, and were validated in a blinded replication cohort from Tanzania (n = 45), where we predicted clinical BV with 91% accuracy. Correlations between the metabolome and microbiota identified Gardnerella vaginalis as a putative producer of GHB, and we demonstrate production by this species in vitro. This work illustrates how changes in community structure alter the chemical composition of the vagina, and identifies highly specific biomarkers for a common condition

    Vaginal Microbiome and Epithelial Gene Array in Post-Menopausal Women with Moderate to Severe Dryness

    Get PDF
    After menopause, many women experience vaginal dryness and atrophy of tissue, often attributed to the loss of estrogen. An understudied aspect of vaginal health in women who experience dryness due to atrophy is the role of the resident microbes. It is known that the microbiota has an important role in healthy vaginal homeostasis, including maintaining the pH balance and excluding pathogens. The objectives of this study were twofold: first to identify the microbiome of post-menopausal women with and without vaginal dryness and symptoms of atrophy; and secondly to examine any differences in epithelial gene expression associated with atrophy. The vaginal microbiome of 32 post-menopausal women was profiled using Illumina sequencing of the V6 region of the 16S rRNA gene. Sixteen subjects were selected for follow-up sampling every two weeks for 10 weeks. In addition, 10 epithelial RNA samples (6 healthy and 4 experiencing vaginal dryness) were acquired for gene expression analysis by Affymetrix Human Gene array. The microbiota abundance profiles were relatively stable over 10 weeks compared to previously published data on premenopausal women. There was an inverse correlation between Lactobacillus ratio and dryness and an increased bacterial diversity in women experiencing moderate to severe vaginal dryness. In healthy participants, Lactobacillus iners and L. crispatus were generally the most abundant, countering the long-held view that lactobacilli are absent or depleted in menopause. Vaginal dryness and atrophy were associated with down-regulation of human genes involved in maintenance of epithelial structure and barrier function, while those associated with inflammation were up-regulated consistent with the adverse clinical presentation

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore