1 research outputs found

    Testing ZZ boson rare decays Z→H1γ,A1γZ\to H_1 \gamma, A_1 \gamma with (g−2)μ(g-2)_{\mu}, δMW\delta M_W, and BR(hSM→Zγ)BR(h_{\rm SM}\to Z\gamma) in the NMSSM

    Full text link
    We study the rare decay process of ZZ boson into photon, accompanied by a CP-even or CP-odd scalar. We present the analytical delineation of the processes through the model-independent parametrizations of the new physics couplings and, finally, consider the Next-to-Minimal Supersymmetric Standard Model to mark out the parameter space where the branching fraction can have the maximum value. As a part of the necessary phenomenological and experimental cross-checks, we aim to fit the anomalous magnetic moment of the muon and WW boson mass anomaly through the supersymmetric contributions. We also find that the decays Z→H1γ,A1γZ\to H_1 \gamma, A_1 \gamma can serve as an excellent complementary test to BR(hSM→Zγ)BR(h_{\rm SM}\to Z\gamma). In fact, to facilitate future searches, we unveil a few benchmark points that additionally satisfy the deviation of BR(hSM→Zγ)BR(h_{\rm SM}\to Z\gamma) from the SM value based on the recent measurements of ATLAS and CMS. Future proposals such as ILC, CEPC, and FCC-ee are anticipated to operate for multiple years, focusing on center-of-mass energy near the ZZ pole. Consequently, these projects will be capable of conducting experiments at the Giga-ZZ (10910^{9} of ZZ bosons) and Tera-ZZ (101210^{12} of ZZ bosons) phases, which may probe the aforesaid rare decay processes, thus the model as well. These unconventional yet complementary searches offer different routes to explore the supersymmetric models with extended Higgs sectors like NMSSM.Comment: 32 pages, 4 figure
    corecore