126 research outputs found

    HIV-related travel restrictions: trends and country characteristics

    Get PDF
    Introduction: Increasingly, HIV-seropositive individuals cross international borders. HIV-related restrictions on entry, stay, and residence imposed by countries have important consequences for this mobile population. Our aim was to describe the geographical distribution of countries with travel restrictions and to examine the trends and characteristics of countries with such restrictions. Methods: In 2011, data presented to UNAIDS were used to establish a list of countries with and without HIV restrictions on entry, stay, and residence and to describe their geographical distribution. The following indicators were investigated to describe the country characteristics: population at mid-year, international migrants as a percentage of the population, Human Development Index, estimated HIV prevalence (age: 15–49), presence of a policy prohibiting HIV screening for general employment purposes, government and civil society responses to having non-discrimination laws/regulations which specify migrants/mobile populations, government and civil society responses to having laws/regulations/policies that present obstacles to effective HIV prevention, treatment, care, and support for migrants/mobile populations, Corruption Perception Index, and gross national income per capita. Results: HIV-related restrictions exist in 45 out of 193 WHO countries (23%) in all regions of the world. We found that the Eastern Mediterranean and Western Pacific Regions have the highest proportions of countries with these restrictions. Our analyses showed that countries that have opted for restrictions have the following characteristics: smaller populations, higher proportions of migrants in the population, lower HIV prevalence rates, and lack of legislation protecting people living with HIV from screening for employment purposes, compared with countries without restrictions. Conclusion: Countries with a high proportion of international migrants tend to have travel restrictions – a finding that is relevant to migrant populations and travel medicine providers alike. Despite international pressure to remove travel restrictions, many countries continue to implement these restrictions for HIV-positive individuals on entry and stay. Since 2010, the United States and China have engaged in high profile removals. This may be indicative of an increasing trend, facilitated by various factors, including international advocacy and the setting of a UNAIDS goal to halve the number of countries with restrictions by 2015

    Analysis of RNA Binding by the Dengue Virus NS5 RNA Capping Enzyme

    Get PDF
    Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5′ end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the KD for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5′ phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5′ di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented

    Global Proteome Analysis of Leptospira interrogans

    Get PDF
    Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometry complemented with two-dimensional gel electrophoresis and MALDI-TOF mass spec-trometry. A total of 563 proteins were identified in this study. Altered expression of 65 proteins, including upregulation of the L. interrogans virulence factor Loa22 and 5 novel proteins with homology to virulence factors found in other pathogens, was observed between the comparative conditions. Immunoblot analyses confirmed upregulation of 5 of the known or putative virulence factors in L. interrogans exposed to the in vivo-like environmental conditions. Further, ELISA analyses using serum from patients with leptospirosis and immunofluorescence studies performed on liver sections derived from L. interrogans-infected hamsters verified expression of all but one of the identified proteins during infection. These studies, which represent the first documented comparative global proteome analysis of Leptospira, demonstrated proteome alterations under conditions that mimic in vivo infection and allowed for the identification of novel putative L. interrogans virulence factors

    Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian pathogenic <it>Escherichia coli </it>(APEC) is detrimental to poultry health and its zoonotic potential is a food safety concern. Regulation of antimicrobials in food-production animals has put greater focus on enhancing host resistance to bacterial infections through genetics. To better define effective mechanism of host resistance, global gene expression in the spleen of chickens, harvested at two times post-infection (PI) with APEC, was measured using microarray technology, in a design that will enable investigation of effects of vaccination, challenge, and pathology level.</p> <p>Results</p> <p>There were 1,101 genes significantly differentially expressed between severely infected and non-infected groups on day 1 PI and 1,723 on day 5 PI. Very little difference was seen between mildly infected and non-infected groups on either time point. Between birds exhibiting mild and severe pathology, there were 2 significantly differentially expressed genes on day 1 PI and 799 on day 5 PI. Groups with greater pathology had more genes with increased expression than decreased expression levels. Several predominate immune pathways, Toll-like receptor, Jak-STAT, and cytokine signaling, were represented between challenged and non-challenged groups. Vaccination had, surprisingly, no detectible effect on gene expression, although it significantly protected the birds from observable gross lesions. Functional characterization of significantly expressed genes revealed unique gene ontology classifications during each time point, with many unique to a particular treatment or class contrast.</p> <p>Conclusions</p> <p>More severe pathology caused by APEC infection was associated with a high level of gene expression differences and increase in gene expression levels. Many of the significantly differentially expressed genes were unique to a particular treatment, pathology level or time point. The present study not only investigates the transcriptomic regulations of APEC infection, but also the degree of pathology associated with that infection. This study will allow for greater discovery into host mechanisms for disease resistance, providing targets for marker assisted selection and advanced drug development.</p

    Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes

    Full text link
    corecore