312 research outputs found

    ϱ → 4π in chirally symmetric models

    Get PDF
    The decays rho0 → 2π+2π− and rho0 → 2π0π+π− are studied using various effective Lagrangians for π and rho (and in some case a1) mesons, all of which respect the approximate chiral symmetry of the strong interaction. Partial widths of the order of 1 keV or less are found in all cases. These are an order of magnitude smaller than recent predictions based on non-chiral models

    Deconstructing triplet nucleon-nucleon scattering

    Full text link
    Nucleon-nucleon scattering in spin-triplet channels is analysed within an effective field theory where one-pion exchange is treated nonperturbatively. Justifying this requires the identification of an additional low-energy scale in the strength of that potential. Short-range interactions are organised according to the resulting power counting, in which the leading term is promoted to significantly lower order than in the usual perturbative counting. In each channel there is a critical momentum above which the waves probe the singular core of the tensor potential and the new counting is necessary. When the effects of one- and two-pion exchange have been removed using a distorted-wave Born approximation, the residual scattering in waves with L<=2 is well described by the first three terms in the new counting. In contrast, the scattering in waves with L>=3 is consistent with the perturbative counting, at least for energies up to 300 MeV. This pattern is in agreement with estimates of the critical momenta in these channels.Comment: 13 pages, RevTeX, 8 figures, minor clarifications adde

    Comment on soft-pion emission in DVCS

    Full text link
    The soft-pion theorem for pion production in deeply virtual Compton scattering, derived by Guichon, Mosse and Vanderhaegen, is shown to be consistent with chiral perturbation theory. Chiral symmetry requires that the nonsinglet operators corresponding to spin-independent and spin-dependent parton distributions have the same anomalous dimensions in cases where those operators are related by chiral transformations. In chiral perturbation theory, their scale-dependences can thus be absorbed in the coefficents of the corresponding effective operators, without affecting their chiral structures.Comment: 2 pages, RevTe

    Effective short-range interaction for spin-singlet P-wave nucleon-nucleon scattering

    Full text link
    Distorted-wave methods are used to remove the effects of one- and two-pion exchange up to order Q^3 from the empirical 1P1 phase shift. The one divergence that arises can be renormalised using an order-Q^2 counterterm which is provided by the (Weinberg) power counting appropriate to the effective field theory for this channel. The residual interaction is used to estimate the scale of the underlying physics.Comment: 4 pages, 3 figures (pdf

    Low-energy interaction of composite spin-half systems with scalar and vector fields

    Get PDF
    We consider a composite spin-half particle moving in spatially-varying scalar and vector fields. The vector field is assumed to couple to a conserved charge, but no assumption is made about either the structure of the composite or its coupling to the scalar field. A general form for the piece of the spin-orbit interaction of the composite with the scalar and vector fields which is first-order in momentum transfer Q{\bf Q} and second-order in the fields is derived.Comment: 10 pages, RevTe

    Renormalisation-group analysis of repulsive three-body systems

    Full text link
    A coordinate space approach, based on that used by Efimov, is applied to three-body systems with contact interactions between pairs of particles. In systems with nonzero orbital angular momentum or with asymmetric spatial wave functions, the hyperradial equation contains a repulsive 1/r^2 potential. The resulting wave functions are used in a renormalisation group analysis. This confirms Griesshammer's power counting for short-range three-body forces in these systems. The only exceptions are ones like the 4S channel for three nucleons, where any derivatives needed in the interaction are found to be already counted by the scaling with the cut-off.Comment: 5 pages, RevTe

    Power counting with one-pion exchange

    Full text link
    Techniques developed for handing inverse-power-law potentials in atomic physics are applied to the tensor one-pion exchange potential to determine the regions in which it can be treated perturbatively. In S-, P- and D-waves the critical values of the relative momentum are less than or of the order of 400 MeV. The RG is then used to determine the power counting for short-range interaction in the presence of this potential. In the P-and D-waves, where there are no low-energy bound or virtual states, these interactions have half-integer RG eigenvalues and are substantially promoted relative to naive expectations. These results are independent of whether the tensor force is attractive or repulsive. In the 3S1 channel the leading term is relevant, but it is demoted by half an order compared to the counting for the effective-range expansion with only a short-range potential. The tensor force can be treated perturbatively in those F-waves and above that do not couple to P- or D-waves. The corresponding power counting is the usual one given by naive dimensional analysis.Comment: 18 pages, RevTeX (further details, explanation added

    Vacuum Properties of Mesons in a Linear Sigma Model with Vector Mesons and Global Chiral Invariance

    Full text link
    We present a two-flavour linear sigma model with global chiral symmetry and vector and axial-vector mesons. We calculate pion-pion scattering lengths and the decay widths of scalar, vector, and axial-vector mesons. It is demonstrated that vector and axial-vector meson degrees of freedom play an important role in these low-energy processes and that a reasonable theoretical description requires globally chirally invariant terms other than the vector meson mass term. An important question for meson vacuum phenomenology is the quark content of the physical scalar f0(600) and a0(980) mesons. We investigate this question by assigning the quark-antiquark sigma and a0 states of our model with these physical mesons. We show via a detailed comparison with experimental data that this scenario can describe all vacuum properties studied here except for the decay width of the sigma, which turns out to be too small. We also study the alternative assignment f0(1370) and a0(1450) for the scalar mesons. In this case the decay width agrees with the experimental value, but the pion-pion scattering length a00a_{0}^{0} is too small. This indicates the necessity to extend our model by additional scalar degrees of freedom.Comment: 22 pages, 6 figure
    • …
    corecore