91 research outputs found

    Kinetic theory for scalar fields with nonlocal quantum coherence

    Full text link
    We derive quantum kinetic equations for scalar fields undergoing coherent evolution either in time (coherent particle production) or in space (quantum reflection). Our central finding is that in systems with certain space-time symmetries, quantum coherence manifests itself in the form of new spectral solutions for the dynamical 2-point correlation function. This spectral structure leads to a consistent approximation for dynamical equations that describe coherent evolution in presence of decohering collisions. We illustrate the method by solving the bosonic Klein problem and the bound states for the nonrelativistic square well potential. We then compare our spectral phase space definition of particle number to other definitions in the nonequilibrium field theory. Finally we will explicitly compute the effects of interactions to coherent particle production in the case of an unstable field coupled to an oscillating background.Comment: 33 pages, 7 figures, replaced with the version published in JHE

    "Double-trace" Deformations, Boundary Conditions and Spacetime Singularities

    Get PDF
    Double-trace deformations of the AdS/CFT duality result in a new perturbation expansion for string theory, based on a non-local worldsheet. We discuss some aspects of the deformation in the low energy gravity approximation, where it appears as a change in the boundary condition of fields. We relate unique features of the boundary of AdS to the worldsheet becoming non-local, and conjecture that non-local worldsheet actions may be generic in other classes of backgrounds.Comment: 21 pages, 2 figures, harvmac. v2: minor changes, references added, version sent to JHEP. v3 minor correction

    Non-linear corrections to inflationary power spectrum

    Full text link
    We study non-linear contributions to the power spectrum of the curvature perturbation on super-horizon scales, produced during slow-roll inflation driven by a canonical single scalar field. We find that on large scales the linear power spectrum completely dominates and leading non-linear corrections remain totally negligible, indicating that we can safely rely on linear perturbation theory to study inflationary power spectrum. We also briefly comment on the infrared and ultraviolet behaviour of the non-linear corrections.Comment: (v1) 14 pages, 2 figures; (v2) references added and discussions expanded, including a new version of Figure 2, to appear in Journal of Cosmology and Astroparticle Physic

    Schwinger-Keldysh Propagators from AdS/CFT Correspondence

    Get PDF
    We demonstrate how to compute real-time Green's functions for a class of finite temperature field theories from their AdS gravity duals. In particular, we reproduce the two-by-two Schwinger-Keldysh matrix propagator from a gravity calculation. Our methods should work also for computing higher point Lorentzian signature correlators. We elucidate the boundary condition subtleties which hampered previous efforts to build a Lorentzian-signature AdS/CFT correspondence. For two-point correlators, our construction is automatically equivalent to the previously formulated prescription for the retarded propagator.Comment: 16 pages, 1 figure, references added; to appear in JHE

    Mutated hybrid inflation in f(R,â–ˇR)f(R,{\Box}R)-gravity

    Full text link
    A new hybrid inflationary scenario in the context of f(R,â–ˇR)f(R,{\Box}R)-gravity is proposed. Demanding the waterfall field to 'support the potential from below' [unlike the original proposal by Stewart in Phys. Lett. B345, 414 (1995)], we demonstrate that the scalar potential is similar to that of the large-field chaotic inflation model proposed by Linde in Phys. Lett. B129, 177 (1983). Inflationary observables are used to constrain the parameter space of our model; in the process, an interesting limit on the number of e-folds N is found.Comment: 9 pages, 2 figures, LaTeX2e, v2: Sec.3 expanded and improved, 1 Fig. added, a new result included, some Eqs. corrected, 2 References adde

    Inflation with General Initial Conditions for Scalar Perturbations

    Full text link
    We explore the possibility of a single field quasi-de Sitter inflationary model with general initial state for primordial fluctuations. In this paper, first we compute the power spectrum and the bispectrum of scalar perturbations with coherent state as the initial state. We find that a large class of coherent states are indistinguishable from the Bunch-Davies vacuum state and hence consistent with the current observations. In case of a more general initial state built over Bunch-Davies vacuum state, we show that the constraints on the initial state from observed power spectrum and local bispectrum are relatively weak and for quasi-de Sitter inflation a large number of initial states are consistent with the current observations. However, renormalizability of the energy-momentum tensor of the fluctuations constraints the initial state further.Comment: Updated to match published version, 20 page

    Phase Transition of Electrically Charged Ricci-flat Black Holes

    Full text link
    We study phase transition between electrically charged Ricci-flat black holes and AdS soliton spacetime of Horowitz and Myers in five dimensions. Boundary topology for both of them is S1Ă—S1Ă—R2S^1 \times S^1 \times R^2. We consider Reissner-Nordstrom black hole and R-charged black holes and find that phase transition of these black holes to AdS soliton spacetime depends on the relative size of two boundary circles. We also perform the stability analysis for these black holes. In order to use the AdS/CFT correspondence, we work in the grand canonical ensemble.Comment: 33 pages, 9 figures, Version 2, References adde

    Lodged in the throat: Internal infinities and AdS/CFT

    Full text link
    In the context of AdS3/CFT2, we address spacetimes with a certain sort of internal infinity as typified by the extreme BTZ black hole. The internal infinity is a null circle lying at the end of the black hole's infinite throat. We argue that such spacetimes may be described by a product CFT of the form CFT-L * CFT-R, where CFT-R is associated with the asymptotically AdS boundary while CFT-L is associated with the null circle. Our particular calculations analyze the CFT dual of the extreme BTZ black hole in a linear toy model of AdS3/CFT2. Since the BTZ black hole is a quotient of AdS3, the dual CFT state is a corresponding quotient of the CFT vacuum state. This state turns out to live in the aforementioned product CFT. We discuss this result in the context of general issues of AdS/CFT duality and entanglement entropy.Comment: 11 pages, 2 figures; v2 - some typos corrected, minor revision

    On time-dependent AdS/CFT

    Full text link
    We clarify aspects of the holographic AdS/CFT correspondence that are typical of Lorentzian signature, to lay the foundation for a treatment of time-dependent gravity and conformal field theory phenomena. We provide a derivation of bulk-to-boundary propagators associated to advanced, retarded and Feynman bulk propagators, and provide a better understanding of the boundary conditions satisfied by the bulk fields at the horizon. We interpret the subleading behavior of the wavefunctions in terms of specific vacuum expectation values, and compute two-point functions in our framework. We connect our bulk methods to the closed time path formalism in the boundary field theory.Comment: 19 pages, v2: added reference, JHEP versio

    Brownian motion in AdS/CFT

    Full text link
    We study Brownian motion and the associated Langevin equation in AdS/CFT. The Brownian particle is realized in the bulk spacetime as a probe fundamental string in an asymptotically AdS black hole background, stretching between the AdS boundary and the horizon. The modes on the string are excited by the thermal black hole environment and consequently the string endpoint at the boundary undergoes an erratic motion, which is identified with an external quark in the boundary CFT exhibiting Brownian motion. Semiclassically, the modes on the string are thermally excited due to Hawking radiation, which translates into the random force appearing in the boundary Langevin equation, while the friction in the Langevin equation corresponds to the excitation on the string being absorbed by the black hole. We give a bulk proof of the fluctuation-dissipation theorem relating the random force and friction. This work can be regarded as a step toward understanding the quantum microphysics underlying the fluid-gravity correspondence. We also initiate a study of the properties of the effective membrane or stretched horizon picture of black holes using our bulk description of Brownian motion.Comment: 54 pages (38 pages + 5 appendices), 5 figures. v2: references added, clarifications in 6.2. v3: clarifications, version submitted to JHE
    • …
    corecore