5 research outputs found

    May Bradykinesia Features Aid in Distinguishing Parkinson's Disease, Essential Tremor, And Healthy Elderly Individuals?

    Get PDF
    Background: Bradykinesia is the hallmark feature of Parkinson's disease (PD); however, it can manifest in other conditions, including essential tremor (ET), and in healthy elderly individuals. Objective: Here we assessed whether bradykinesia features aid in distinguishing PD, ET, and healthy elderly individuals. Methods: We conducted simultaneous video and kinematic recordings of finger tapping in 44 PD patients, 69 ET patients, and 77 healthy elderly individuals. Videos were evaluated blindly by expert neurologists. Kinematic recordings were blindly analyzed. We calculated the inter-raters agreement and compared data among groups. Density plots assessed the overlapping in the distribution of kinematic data. Regression analyses and receiver operating characteristic curves determined how the kinematics influenced the likelihood of belonging to a clinical score category and diagnostic group. Results: The inter-rater agreement was fair (Fleiss K = 0.32). Rater found the highest clinical scores in PD, and higher scores in ET than healthy elderly individuals (p < 0.001). In regard to kinematic analysis, the groups showed variations in movement velocity, with PD presenting the slowest values and ET displaying less velocity than healthy elderly individuals (all ps < 0.001). Additionally, PD patients showed irregular rhythm and sequence effect. However, kinematic data significantly overlapped. Regression analyses showed that kinematic analysis had high specificity in differentiating between PD and healthy elderly individuals. Nonetheless, accuracy decreased when evaluating subjects with intermediate kinematic values, i.e., ET patients. Conclusion: Despite a considerable degree of overlap, bradykinesia features vary to some extent in PD, ET, and healthy elderly individuals. Our findings have implications for defining bradykinesia and categorizing patients

    Subtle changes in central dopaminergic tone underlie bradykinesia in essential tremor

    Get PDF
    Introduction: In this research, our primary objective was to explore the correlation between basal ganglia dopaminergic neurotransmission, assessed using 123I-FP-CIT (DAT-SPECT), and finger movements abnormalities in patients with essential tremor (ET) and Parkinson's disease (PD). Methods: We enrolled 16 patients with ET, 17 with PD, and 18 healthy controls (HC). Each participant underwent comprehensive clinical evaluations, kinematic assessments of finger tapping. ET and PD patients underwent DAT-SPECT imaging. The DAT-SPECT scans were subjected to both visual and semi-quantitative analysis using DaTQUANT®. We then investigated the correlations between the clinical, kinematic, and DAT-SPECT data, in patients. Results: Our findings confirm that individuals with ET exhibited slower finger tapping than HC. Visual evaluation of radiotracer uptake in both striata demonstrated normal levels within the ET patient cohort, while PD patients displayed reduced uptake. However, there was notable heterogeneity in the quantification of uptake within the striata among ET patients. Additionally, we found a correlation between the amount of radiotracer uptake in the striatum and movement velocity during finger tapping in patients. Specifically, lower radioligand uptake corresponded to decreased movement velocity (ET: coef. = 0.53, p-adj = 0.03; PD: coef. = 0.59, p-adj = 0.01). Conclusion: The study's findings suggest a potential link between subtle changes in central dopaminergic tone and altered voluntary movement execution, in ET. These results provide further insights into the pathophysiology of ET. However, longitudinal studies are essential to determine whether the slight reduction in dopaminergic tone observed in ET patients represents a distinct subtype of the disease or could serve as a predictor for the clinical progression into PD

    Relationship between the interlimb transfer of a visuomotor learning task and interhemispheric inhibition in healthy humans

    No full text
    The "interlimb transfer" phenomenon consists of improved performance of the trained and untrained contralateral limbs after unilateral motor practice. We here assessed whether a visuomotor learning task can be transferred from one hemisphere to the other, whether this occurs symmetrically, and the cortical neurophysiological correlates of this phenomenon, focusing on interhemispheric connectivity measures. We enrolled 33 healthy subjects (age range: 24-73 years). Participants underwent two randomized sessions, which investigated the transfer from the dominant to the nondominant hand and vice versa. Measures of cortical and intracortical excitability and interhemispheric inhibition were assessed through transcranial magnetic stimulation before and after a visuomotor task. The execution of the visuomotor task led to an improvement in motor performance with the dominant and nondominant hands and induced a decrease in intracortical inhibition in the trained hemisphere. Participants were also able to transfer the visuomotor learned skill. The interlimb transfer, however, only occurred from the dominant to the nondominant hand and positively correlated with individual learning-related changes in interhemispheric inhibition. We here demonstrated that the "interlimb transfer" of a visuomotor task occurs asymmetrically and relates to the modulation of specific inhibitory interhemispheric connections. The study results have pathophysiological, clinical, and neuro-rehabilitative implications

    Facial emotion expressivity in patients with Parkinson's and Alzheimer's disease

    No full text
    : Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders with some overlapping clinical features. Hypomimia (reduced facial expressivity) is a prominent sign of PD and it is also present in AD. However, no study has experimentally assessed hypomimia in AD and compared facial expressivity between PD and AD patients. We compared facial emotion expressivity in patients with PD, AD, and healthy controls (HCs). Twenty-four PD patients, 24 AD patients and 24 HCs were videotaped during neutral facial expressions and while posing six facial emotions (anger, surprise, disgust, fear, happiness, and sadness). Fifteen raters were asked to evaluate the videos using MDS-UPDRS-III (item 3.2) and to identify the corresponding emotion from a seven-forced-choice response format. We measured the percentage of accuracy, the reaction time (RT), and the confidence level (CL) in the perceived accuracy of the raters' responses. We found the highest MDS-UPDRS 3.2 scores in PD, and higher in AD than HCs. When evaluating the posed expression captures, raters identified a lower percentage of correct answers in the PD and AD groups than HCs. There was no difference in raters' response accuracy between the PD and AD. No difference was observed in RT and CL data between groups. Hypomimia in patients correlated positively with the global MDS-UPDRS-III and negatively with Mini Mental State Examination scores. PD and AD patients have a similar pattern of reduced facial emotion expressivity compared to controls. These findings hold potential pathophysiological and clinical implications
    corecore