3,184 research outputs found
Cavity QED with Multiple Hyperfine Levels
We calculate the weak-driving transmission of a linearly polarized cavity
mode strongly coupled to the D2 transition of a single Cesium atom. Results are
relevant to future experiments with microtoroid cavities, where the
single-photon Rabi frequency g exceeds the excited-state hyperfine splittings,
and photonic bandgap resonators, where g is greater than both the excited- and
ground-state splitting.Comment: 6 pages, 10 figure
Trapped atoms in cavity QED: coupling quantized light and matter
On the occasion of the hundredth anniversary of Albert Einstein's annus mirabilis, we reflect on the development and current state of research in cavity quantum electrodynamics in the optical domain. Cavity QED is a field which undeniably traces its origins to Einstein's seminal work on the statistical theory of light and the nature of its quantized interaction with matter. In this paper, we emphasize the development of techniques for the confinement of atoms strongly coupled to high-finesse resonators and the experiments which these techniques enable
Cavity QED with Single Atoms and Photons
Recent experimental advances in the field of cavity quantum electrodynamics (QED) have opened new possibilities for control of atom-photon interactions. A laser with "one and the same atom" demonstrates the theory of laser operation pressed to its conceptual limit. The generation of single photons on demand and the realization of cavity QED with well defined atomic numbers N = 0, 1, 2,... both represent important steps toward realizing diverse protocols in quantum information science. Coherent manipulation of the atomic state via Raman transitions provides a new tool in cavity QED for in situ monitoring and control of the atom-cavity system. All of these achievements share a common point of departure: the regime of strong coupling. It is thus interesting to consider briefly the history of the strong coupling criterion in cavity QED and to trace out the path that research has taken in the pursuit of this goal
Zener Disaccommodation In Dilute F.C.C. Co-Ti Alloys
The magnetic Dis accommodation, i.e., the time dependence of the low field magnetic permeability, was investigated in cobalt base alloys containing 0-5.1 at.% (0-4.2 wt.%) titanium in the temperature range 400-700°C. A strong temperature dependence of the Dis accommodation observed in the range 430-530°C could be accounted for predominantly by a single first order relaxation process. Analyzing the data in terms of (a) a single exponential relaxation, (b) a lognormal distribution of relaxation times, and (c) a sum of exponential relaxations, it was shown that the relaxation strength varies as the square of the titanium concentration and that the relaxation is characterized by an activation enthalpy of 69 ± 1 kcal/mole and a τ0 of the order of 10-16 sec. The Dis accommodation was attributed to the reorientation of substitutional solute atom (titanium) pairs. From the temperature dependence of the relaxation strength the binding energy of Ti atom pairs was determined to be 0.17 ± 0.08 eV. © 1968
Promotion of endometriosis in mice by polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls.
Previous studies showed exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) enhances the development of endometriotic lesions. In this study we examined the effects of other polyhalogenated aromatic hydrocarbons on endometriotic proliferation. B6C3F1 female mice were treated via oral gavage a total of five times, with 3 weeks between each dosing, with 0, 1, 3, or 10 micrograms 2,3,7,8,-TCDD/kg body weight (bw); 3 or 30 mg 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153)/kg bw; 100, 300, or 1000 micrograms 3,3',4,4',5-pentachlorobiphenyl (PCB 126)/kg bw; 10, 30, or 100 micrograms 2,3,4,7,8-pentachlorodibenzofuran (4-PeCDF)/kg bw; or 2 or 20 mg 1,3,6,8-TCDD/kg at 10 ml/kg bw. Endometriosis was surgically induced during the week of the second dosing. Three weeks following the final dose, the mice were euthanized and endometriotic lesions, whole body, liver, ovaries, uterine horn, and thymus were weighted, and lesion diameters were measured. Lesions, uterine horns, and ovaries were fixed for histopathology and livers were processed for measurement of ethoxyresorufin O-deethylase (EROD) activity. Both 2,3,7,8-TCDD (1 and 3 micrograms/kg bw) and 4-PeCDF (100 micrograms/kg bw) significantly enhanced the growth of endometrial lesions. No statistically significant increase in endometriotic lesion size was detected in animals treated with either PCB 126 or with the highest dose of 2,3,7,8-TCDD, possibly due to the effects of histologically observed ovarian toxicity. The nondioxin-like compounds, PCB 153 and 1,3,6,8-TCDD, produced no observable effects on endometriosis. Hepatic EROD activity was significantly induced by 2,3,7,8-TCDD, 4-PeCDF, and PCB 126, but not by PCB 153 or 1,3,6,8-TCDD. The results of this study provide preliminary support for the hypothesis that halogenated aromatic hydrocarbon-promoted endometriosis may be Ah receptor mediated
Interstitial Solute Trapping In Irradiated And Quenched Iron
The interaction of interstitial carbon and nitrogen solutes with defects produced by low temperature neutron irradiation and by quenching was studied in high purity and Ferrovac E iron. Magnetic Dis accommodation techniques were applied to determine the interstitial solute content after irradiation and upon annealing. Doses of about 1017 neutrons/cm2 caused the trapping of about 20 ppm (atomic) interstitial solutes at 65 (carbon) and 40°C (nitrogen). Trapping of carbon in a Ferrovac E iron alloy occurred during a fast quench from 880°C. After trapping, the interstitial solutes reappeared in solid solution at 300 (carbon, neutron irradiation), 200 (nitrogen, neutron irradiation), and 620°C (carbon, quenching). Various possibilities for the defect traps were considered and it was concluded that trapping of the interstitial solutes occurred at iron interstitial clusters after neutron irradiation and at vacancy type defects after quenching. Copyright © 1968 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinhei
Observation of the Vacuum-Rabi Spectrum for One Trapped Atom
The transmission spectrum for one atom strongly coupled to the field of a
high-finesse optical resonator is observed to exhibit a clearly resolved
vacuum-Rabi splitting characteristic of the normal modes in the eigenvalue
spectrum of the atom-cavity system. A new Raman scheme for cooling atomic
motion along the cavity axis enables a complete spectrum to be recorded for an
individual atom trapped within the cavity mode, in contrast to all previous
measurements in cavity QED that have required averaging over many atoms.Comment: 5 pages with 4 figure
Stable marriage with general preferences
We propose a generalization of the classical stable marriage problem. In our
model, the preferences on one side of the partition are given in terms of
arbitrary binary relations, which need not be transitive nor acyclic. This
generalization is practically well-motivated, and as we show, encompasses the
well studied hard variant of stable marriage where preferences are allowed to
have ties and to be incomplete. As a result, we prove that deciding the
existence of a stable matching in our model is NP-complete. Complementing this
negative result we present a polynomial-time algorithm for the above decision
problem in a significant class of instances where the preferences are
asymmetric. We also present a linear programming formulation whose feasibility
fully characterizes the existence of stable matchings in this special case.
Finally, we use our model to study a long standing open problem regarding the
existence of cyclic 3D stable matchings. In particular, we prove that the
problem of deciding whether a fixed 2D perfect matching can be extended to a 3D
stable matching is NP-complete, showing this way that a natural attempt to
resolve the existence (or not) of 3D stable matchings is bound to fail.Comment: This is an extended version of a paper to appear at the The 7th
International Symposium on Algorithmic Game Theory (SAGT 2014
Demonstration of long-lived high power optical waveguides in air
We demonstrate that femtosecond filaments can set up an extended and robust
thermal waveguide structure in air with a lifetime of several milliseconds,
making possible the very long range guiding and distant projection of high
energy laser pulses and high average power beams. As a proof of principle, we
demonstrate guiding of 110 mJ, 7 ns, 532 nm pulses with 90% throughput over ~15
Rayleigh lengths in a 70 cm long air waveguide generated by the long timescale
thermal relaxation of an array of femtosecond filaments. The guided pulse was
limited only by our available laser energy. In general, these waveguides should
be robust against the effects of thermal blooming of extremely high average
power laser beams.Comment: 11 pages, 5 figure
- …