6 research outputs found

    Hard X-ray stereographic microscopy for single-shot differential phase imaging

    Get PDF
    The characterisation of fast phenomena at the microscopic scale is required for the understanding of catastrophic responses of materials to loads and shocks, the processing of materials by optical or mechanical means, the processes involved in many key technologies such as additive manufacturing and microfluidics, and the mixing of fuels in combustion. Such processes are usually stochastic in nature and occur within the opaque interior volumes of materials or samples, with complex dynamics that evolve in all three dimensions at speeds exceeding many meters per second. There is therefore a need for the ability to record three-dimensional X-ray movies of irreversible processes with resolutions of micrometers and frame rates of microseconds. Here we demonstrate a method to achieve this by recording a stereo phase-contrast image pair in a single exposure. The two images are combined computationally to reconstruct a 3D model of the object. The method is extendable to more than two simultaneous views. When combined with megahertz pulse trains of X-ray free-electron lasers (XFELs) it will be possible to create movies able to resolve 3D trajectories with velocities of kilometers per second

    Two-Species Reaction-Diffusion System: the Effect of Long-Range Spreading

    No full text
    We study fluctuation effects in the two-species reaction-diffusion system A + B → Ø and A + A → (Ø, A). In contrast to the usually assumed ordinary short-range diffusion spreading of the reactants we consider anomalous diffusion due to microscopic long-range hops. In order to describe the latter, we employ the Lévy stochastic ensemble. The probability distribution for the Lévy flights decays in d dimensions with the distance r according to a power-law r−d−σ. For anomalous diffusion (including Lévy flights) the critical dimension dc = σ depends on the control parameter σ, 0 < σ ≤ 2. The model is studied in terms of the field theoretic approach based on the Feynman diagrammatic technique and perturbative renormalization group method. We demonstrate the ideas behind the B particle density calculation

    Two-Species Reaction-Diffusion System: the Effect of Long-Range Spreading

    Get PDF
    We study fluctuation effects in the two-species reaction-diffusion system A + B → Ø and A + A → (Ø, A). In contrast to the usually assumed ordinary short-range diffusion spreading of the reactants we consider anomalous diffusion due to microscopic long-range hops. In order to describe the latter, we employ the Lévy stochastic ensemble. The probability distribution for the Lévy flights decays in d dimensions with the distance r according to a power-law r−d−σ. For anomalous diffusion (including Lévy flights) the critical dimension dc = σ depends on the control parameter σ, 0 < σ ≤ 2. The model is studied in terms of the field theoretic approach based on the Feynman diagrammatic technique and perturbative renormalization group method. We demonstrate the ideas behind the B particle density calculation

    Shot-to-shot flat-field correction at X-ray free-electron lasers

    No full text
    X-ray free-electron lasers (XFELs) provide high-brilliance pulses, which offer unique opportunities for coherent X-ray imaging techniques, such as in-line holography. One of the fundamental steps to process in-line holographic data is flat-field correction, which mitigates imaging artifacts and, in turn, enables phase reconstructions. However, conventional flat-field correction approaches cannot correct single XFEL pulses due to the stochastic nature of the self-amplified spontaneous emission (SASE), the mechanism responsible for the high brilliance of XFELs. Here, we demonstrate on simulated and megahertz imaging data, measured at the European XFEL, the possibility of overcoming such a limitation by using two different methods based on principal component analysis and deep learning. These methods retrieve flat-field corrected images from individual frames by separating the sample and flat-field signal contributions; thus, enabling advanced phase-retrieval reconstructions. We anticipate that the proposed methods can be implemented in a real-time processing pipeline, which will enable online data analysis and phase reconstructions of coherent full-field imaging techniques such as in-line holography at XFELs

    Hard X-ray stereographic microscopy for single-shot differential phase imaging

    No full text
    The characterisation of fast phenomena at the microscopic scale is required for the understanding of catastrophic responses of materials to loads and shocks, the processing of materials by optical or mechanical means, the processes involved in many key technologies such as additive manufacturing and microfluidics, and the mixing of fuels in combustion. Such processes are usually stochastic in nature and occur within the opaque interior volumes of materials or samples, with complex dynamics that evolve in all three dimensions at speeds exceeding many meters per second. There is therefore a need for the ability to record three-dimensional X-ray movies of irreversible processes with resolutions of micrometers and frame rates of microseconds. Here we demonstrate a method to achieve this by recording a stereo phase-contrast image pair in a single exposure. The two images are combined computationally to reconstruct a 3D model of the object. The method is extendable to more than two simultaneous views. When combined with megahertz pulse trains of X-ray free-electron lasers (XFELs) it will be possible to create movies able to resolve 3D trajectories with velocities of kilometers per second.ISSN:1094-408
    corecore