3 research outputs found

    The new critical metals database “HTMET”: High tech trace element characteristics of sulphides from base metal provinces in the variscan basement and adjacent sedimentary rocks in Germany

    Get PDF
    High tech (HT) trace elements such as germanium, gallium and indium gain rising importance in the development of innovative technologies. The database “HTMET” forms the first nationwide metal-ore database for Germany, created to visualise HT metal characteristics of base metal ores from important mining districts. Mineralogical and geochemical investigations on 478 samples and ore concentrates from 109 Pb-Zn-Cu occurrences were carried out using analytical methods with high spatial resolution and bulk sample methods. The database provides aggregated data based on 17,000 geochemical data sets, compiled information on regional infrastructure and environmental risks as well as data on innovative raw material-efficient processing techniques. Evaluation of combined data provides interactive maps revealing new potentials for specific HT metals in Germany. Differences in regional distribution of these trace elements and dependency of their concentration levels in the ore on the genetic deposit type became apparent. Sphalerite from the sediment-hosted massive sulphide (SHMS) deposit “Rammelsberg” and skarn deposits in the Erzgebirge contain elevated indium contents (median 14–119 ppm), whereas the SHMS deposit “Meggen” is poor in HT metals. Germanium forms the predominant HT trace element in colloform sphalerite of Mississippi-Valley-Type (MVT) deposits (median 29–147 ppm); in contrast, crystalline sphalerite is low in germanium in this deposit type. Sphalerite in all hydrothermal vein deposits shares a distinct enrichment in gallium (median 6–81 ppm); however, germanium and indium concentrations vary significantly depending on the metal source and fluid conditions. The Ruhrgebiet and the Schwarzwald ore veins show an enrichment in germanium (median 55–73 ppm), whilst vein sphalerite from the Erzgebirge is specialised in indium (median 33 ppm). The data demonstrate that the HT trace element inventory of the studied base metal sulphides is not only a function of the genetic ore deposit type, but is also triggered by locally variable geology such as source rock and fluid composition and organic content of the rock. Gallium seems to derive from adjacent lithologies, whereas indium and germanium may have more distant sources

    Low-fat hypocaloric diet reduces neprilysin in overweight and obese human subjects

    Get PDF
    AIMS Neprilysin (NEP), a zinc metallopeptidase, degrades a variety of bioactive peptides including natriuretic peptides terminating their biological action on arterial blood pressure and natriuresis. Pharmacological inhibition of NEP reduces mortality in patients with heart failure with reduced ejection fraction. Physiological interventions reducing NEP levels are unknown in humans. Because obesity leads to increased NEP levels and increases the risk for heart failure, we hypothesized that weight loss reduces NEP concentrations in plasma and tissue. METHODS AND RESULTS We randomized overweight to obese human subjects to a low-fat or low-carbohydrate hypocaloric 6 month weight loss intervention. Soluble NEP was determined in plasma, and NEP mRNA was analysed from subcutaneous adipose tissue before and after diet. Low-fat diet-induced weight loss reduced soluble NEP levels from 0.83 ± 0.18 to 0.72 ± 0.18 μg/L (P = 0.038), while subcutaneous adipose tissue NEP mRNA expression was reduced by both dietary interventions [21% (P = 0.0057) by low-fat diet and 16% (P = 0.048) by low-carbohydrate diet]. We also analysed the polymorphisms of the gene coding for NEP, rs9827586 and rs701109, known to be associated with plasma NEP levels. For both single-nucleotide polymorphisms, minor allele carriers (A/A) had higher baseline plasma NEP levels (rs9827586: β = 0.53 ± 0.23, P < 0.0001; rs701109: β = 0.43 ± 0.22, P = 0.0016), and minor allele carriers of rs9827586 responded to weight loss with a larger NEP reduction (rs9827586: P = 0.0048). CONCLUSIONS Our study identifies weight loss via a hypocaloric low-fat diet as the first physiological intervention in humans to reduce NEP in plasma and adipose tissue. Specific single-nucleotide polymorphisms further contribute to the decrease. Our findings may help to explain the beneficial effect of weight loss on cardiac function in patients with heart failure
    corecore