1,539 research outputs found
Nanometer lithography on silicon and hydrogenated amorphous silicon with low-energy electrons
We report the local oxidation of hydrogen terminated silicon (Si) surfaces induced with the scanning-tunneling microscope (STM) operating in air and by a beam of free low-energy electrons. With STM, oxide lines were written in Si(100) and Si(110) and transferred into the substrate by wet etching. In case of Si(110) trenches with a width as small as 35 nm and a depth of 300 nm were made. The same process has also successfully been applied to the patterning of hydrogenated amorphous silicon (a-Si:H) thin films. We demonstrate the fabrication of metallic ânanowiresâ using a-Si:H as resist layer. With regard to the process of oxidation, it is found that the oxide written with STM is apparently not proportional to the electron current, in contrast to results obtained with a beam of free electrons in an oxygen gas-environment. The dose needed to remove the hydrogen was determined as a function of electron energy. This dose is minimal for 100 eV electrons amounting to 4 mC/cm2
In situ acceleration in the galactic center arc
For the nonthermal radio emission of the Galactic Center Arc in situ electron
acceleration is imperative. The observed radio spectrum can be modeled by a
transport equation for the relativistic electrons which includes particle
acceleration by electric fields, momentum diffusion via scattering by
magnetohydrodynamical turbulence and energy losses by synchrotron radiation.
The accelerating electric fields can be regarded as a natural consequence of
multiple reconnection events, caused by the interaction between a molecular
cloud and the Arc region. The radio spectrum and even the recently detected 150
GHz emission, explicitely originating from the interaction regions of a
molecular cloud with the magnetized Arc, can be explained in terms of
quasi-monoenergetically distributed relativistic electrons with a typical
energy of about 10 GeV accelerated in stochastically distributed magnetic
reconnection zones
Collagen Fibrillogenesis in Tissues, in Solution and from Modeling: A Synthesis
Collagen fibril formation has been studied in tissues by light and electron microscopy; in solution by light scattering and microscopy; and from modeling based on the amino acid sequence of type I collagen. Taken together these studies indicate that collagen fibril assembly involves a stepwise formation of intermediate aggregates in which each intermediate is formed from earlier aggregates. In this sequence, monomeric collagen contributes only to the formation of early aggregates; and fibrils grow in length by the addition of intermediate aggregates to the end of a subfibril and in width by lateral wrapping of subfibrils. Modeling based on amino acid sequence data of possible intermolecular charge-charge interactions indicate 2 different kinds, one which promotes linear aggregation and the other which promotes lateral aggregation. The effects of different colla-gens and coprecipitants such as glycoproteins and proteoglycans can begin to be explained by their influence on the character of intermediate subassemblies. Ultrastructural data from 2 tissues, embryonic cornea and tendon, indicate that the site of fibril growth and assembly is at the cell surface
Shear-Flow Driven Current Filamentation: Two-Dimensional Magnetohydrodynamic Simulations
The process of current filamentation in permanently externally driven,
initially globally ideal plasmas is investigated by means of two-dimensional
Magnetohydrodynamic (MHD)-simulations. This situation is typical for
astrophysical systems like jets, the interstellar and intergalactic medium
where the dynamics is dominated by external forces. Two different cases are
studied. In one case, the system is ideal permanently and dissipative processes
are excluded. In the second case, a system with a current density dependent
resistivity is considered. This resistivity is switched on self-consistently in
current filaments and allows for local dissipation due to magnetic
reconnection. Thus one finds tearing of current filaments and, besides, merging
of filaments due to coalescence instabilities. Energy input and dissipation
finally balance each other and the system reaches a state of constant magnetic
energy in time.Comment: 32 Pages, 13 Figures. accepted, to appear in Physics of Plasmas
(049012
- âŠ