4 research outputs found

    A Calcium-Selective Channel from Root-Tip Endomembranes of Garden Cress

    Full text link

    Modulation of the ER Ca2+ channel BCC1 from tendrils of Bryonia dioica by divalent cations, protons and H2O2

    Get PDF
    AbstractElectrical properties of the ER Ca2+ channel BCC1 from tendrils of Bryonia dioica were analyzed after incorporation of BCC1 into black lipid bilayers. Single channel current fluctuations were modulated by divalent cations, protons and H2O2. Whereas the channel is permeable for Ca2+, Ba2+ and Sr2+, its conductance is strongly reduced in solutions containing MgCl2. Cu2+ and Zn2+ are potent inhibitors of BCC1 in micromolar concentrations. The open channel conductance of BCC1 increases with acidification of the electrolyte solution. H2O2 shows strong inhibitory effects on BCC1. The channel is almost completely closed at submillimolar concentrations of H2O2. The effects of pH and H2O2 on channel properties are directional and affect BCC1 at the Ca exit side, but not on the entry site. Thus, cytosolic pH and H2O2 levels may play an important role in the modulation of the cytoplasmic free calcium concentration through BCC1

    Functional Analysis of HrpF, a Putative Type III Translocon Protein from Xanthomonas campestris pv. vesicatoria

    No full text
    Type III secretion systems (TTSSs) are specialized protein transport systems in gram-negative bacteria which target effector proteins into the host cell. The TTSS of the plant pathogen Xanthomonas campestris pv. vesicatoria, encoded by the hrp (hypersensitive reaction and pathogenicity) gene cluster, is essential for the interaction with the plant. One of the secreted proteins is HrpF, which is required for pathogenicity but dispensable for type III secretion of effector proteins in vitro, suggesting a role in translocation. In this study, complementation analyses of an hrpF null mutant strain using various deletion derivatives revealed the functional importance of the C-terminal hydrophobic protein region. Deletion of the N terminus abolished type III secretion of HrpF. Employing the type III effector AvrBs3 as a reporter, we show that the N terminus of HrpF contains a signal for secretion but not a functional translocation signal. Experiments with lipid bilayers revealed a lipid-binding activity of HrpF as well as HrpF-dependent pore formation. These data indicate that HrpF presumably plays a role at the bacterial-plant interface as part of a bacterial translocon which mediates effector protein delivery across the host cell membrane
    corecore