87 research outputs found

    Tumor Heterogeneity in Lymphomas: A Different Breed.

    Get PDF
    The facts that cancer represents tissues consisting of heterogeneous neoplastic, as well as reactive, cell populations and that cancers of the same histotype may show profound differences in clinical behavior have long been recognized. With the advent of new technologies and the demands of precision medicine, the investigation of tumor heterogeneity has gained much interest. An understanding of intertumoral heterogeneity in patients with the same disease entity is necessary to optimally guide personalized treatment. In addition, increasing evidence indicates that different tumor areas or primary tumors and metastases in an individual patient can show significant intratumoral heterogeneity on different levels. This phenomenon can be driven by genomic instability, epigenetic events, the tumor microenvironment, and stochastic variations in cellular function and antitumoral therapies. These mechanisms may lead to branched subclonal evolution from a common progenitor clone, resulting in spatial variation between different tumor sites, disease progression, and treatment resistance. This review addresses tumor heterogeneity in lymphomas from a pathologist's viewpoint. The relationship between morphologic, immunophenotypic, and genetic heterogeneity is exemplified in different lymphoma entities and reviewed in the context of high-grade transformation and transdifferentiation. In addition, factors driving heterogeneity, as well as clinical and therapeutic implications of lymphoma heterogeneity, will be discussed

    FusionVAC22_01: a phase I clinical trial evaluating a DNAJB1-PRKACA fusion transcript-based peptide vaccine combined with immune checkpoint inhibition for fibrolamellar hepatocellular carcinoma and other tumor entities carrying the oncogenic driver fusion

    Get PDF
    The DNAJB1-PRKACA fusion transcript was identified as the oncogenic driver of tumor pathogenesis in fibrolamellar hepatocellular carcinoma (FL-HCC), also known as fibrolamellar carcinoma (FLC), as well as in other tumor entities, thus representing a broad target for novel treatment in multiple cancer entities. FL-HCC is a rare primary liver tumor with a 5-year survival rate of only 45%, which typically affects young patients with no underlying primary liver disease. Surgical resection is the only curative treatment option if no metastases are present at diagnosis. There is no standard of care for systemic therapy. Peptide-based vaccines represent a low side-effect approach relying on specific immune recognition of tumor-associated human leucocyte antigen (HLA) presented peptides. The induction (priming) of tumor-specific T-cell responses against neoepitopes derived from gene fusion transcripts by peptide-vaccination combined with expansion of the immune response and optimization of immune function within the tumor microenvironment achieved by immune-checkpoint-inhibition (ICI) has the potential to improve response rates and durability of responses in malignant diseases. The phase I clinical trial FusionVAC22_01 will enroll patients with FL-HCC or other cancer entities carrying the DNAJB1-PRKACA fusion transcript that are locally advanced or metastatic. Two doses of the DNAJB1-PRKACA fusion-based neoepitope vaccine Fusion-VAC-XS15 will be applied subcutaneously (s.c.) with a 4-week interval in combination with the anti-programmed cell death-ligand 1 (PD-L1) antibody atezolizumab starting at day 15 after the first vaccination. Anti-PD-L1 will be applied every 4 weeks until end of the 54-week treatment phase or until disease progression or other reason for study termination. Thereafter, patients will enter a 6 months follow-up period. The clinical trial reported here was approved by the Ethics Committee II of the University of Heidelberg (Medical faculty of Mannheim) and the Paul-Ehrlich-Institute (P-00540). Clinical trial results will be published in peer-reviewed journals.Trial registration numbersEU CT Number: 2022-502869-17-01 and ClinicalTrials.gov Registry (NCT05937295)

    Genetic evolution of <i>in situ</i> follicular neoplasia to aggressive B-cell lymphoma of germinal center subtype

    Get PDF
    In situ follicular neoplasia (ISFN) is the earliest morphologically identifiable precursor of follicular lymphoma (FL). Although it is genetically less complex than FL and has low risk for progression, ISFN already harbors secondary genetic alterations, in addition to the defining t(14;18)(q32;q21) translocation. FL, in turn, frequently progresses to diffuse large B-cell lymphoma (DLBCL) or high-grade B-cell lymphoma (HGBL). By BCL2 staining of available reactive lymphoid tissue obtained at any time point in patients with aggressive B-cell lymphoma (BCL), we identified ten paired cases of ISFN and DLBCL/HGBL, including six de novo tumors and four tumors transformed from FL as an intermediate step, and investigated their clonal evolution using microdissection and next-generation sequencing. A clonal relationship between ISFN and aggressive BCL was established by immunoglobulin and/or BCL2 rearrangements and/or the demonstration of shared somatic mutations for all ten cases. Targeted sequencing revealed CREBBP, KMT2D, EZH2, TNFRSF14 and BCL2 as the genes most frequently mutated already in ISFN. Based on the distribution of private and shared mutations, two patterns of clonal evolution were evident. In most cases, the aggressive lymphoma, ISFN and, when present, FL revealed divergent evolution from a common progenitor, whereas linear evolution with sequential accumulation of mutations was less frequent. In conclusion, we demonstrate for the first time that t(14;18)+ aggressive BCL can arise from ISFN without clinically evident FL as an intermediate step and that during this progression, branched evolution is common

    A significant proportion of classic Hodgkin lymphoma recurrences represents clonally unrelated second primary lymphoma

    Get PDF
    Despite high cure rates in classic Hodgkin lymphoma (cHL), relapses are observed. Whether relapsed cHL represents second primary lymphoma or an underlying T-cell lymphoma (TCL) mimicking cHL is under-investigated. To analyze the nature of cHL recurrences, in-depth clonality testing of immunoglobulin (IG) and T-cell receptor (TR) rearrangements was performed in paired cHL diagnosis and recurrences of 60 patients, supported by targeted mutation analysis of lymphoma-associated genes. Clonal IG rearrangements were detected by next-generation sequencing (NGS) in 69/120 (58%) diagnosis and recurrence samples. The clonal relationship could be established in 34 cases, identifying clonally related relapsed cHL in 24/34 patients (71%). Clonally unrelated cHL was observed in 10/34 patients (29%) as determined by IG-NGS clonality assessment, and confirmed by the identification of predominantly mutually exclusive gene mutations in the paired cHL samples. In recurrences of &gt;2 years, ~60% of cHL patients for which the clonal relationship could be established showed a second primary cHL. Clonal TR gene rearrangements were identified in 14/125 samples (11%), and TCL-associated gene mutations were detected in 7/14 samples. Retrospective pathology review with integration of the molecular findings were consistent with an underlying TCL in 5 patients aged &gt;50 years. This study shows that cHL recurrences, especially after 2 years, sometimes represent a new primary cHL or TCL mimicking cHL, as uncovered by NGS-based IG/TR clonality testing and gene mutation analysis. Given the significant therapeutic consequences, molecular testing of a presumed relapse in cHL is crucial for subsequent appropriate treatment strategies adapted to the specific lymphoma presentation.</p

    A significant proportion of classic Hodgkin lymphoma recurrences represents clonally unrelated second primary lymphoma

    Get PDF
    Despite high cure rates in classic Hodgkin lymphoma (cHL), relapses are observed. Whether relapsed cHL represents second primary lymphoma or an underlying T-cell lymphoma (TCL) mimicking cHL is under-investigated. To analyze the nature of cHL recurrences, in-depth clonality testing of immunoglobulin (IG) and T-cell receptor (TR) rearrangements was performed in paired cHL diagnosis and recurrences of 60 patients, supported by targeted mutation analysis of lymphoma-associated genes. Clonal IG rearrangements were detected by next-generation sequencing (NGS) in 69/120 (58%) diagnosis and recurrence samples. The clonal relationship could be established in 34 cases, identifying clonally related relapsed cHL in 24/34 patients (71%). Clonally unrelated cHL was observed in 10/34 patients (29%) as determined by IG-NGS clonality assessment, and confirmed by the identification of predominantly mutually exclusive gene mutations in the paired cHL samples. In recurrences of &gt;2 years, ~60% of cHL patients for which the clonal relationship could be established showed a second primary cHL. Clonal TR gene rearrangements were identified in 14/125 samples (11%), and TCL-associated gene mutations were detected in 7/14 samples. Retrospective pathology review with integration of the molecular findings were consistent with an underlying TCL in 5 patients aged &gt;50 years. This study shows that cHL recurrences, especially after 2 years, sometimes represent a new primary cHL or TCL mimicking cHL, as uncovered by NGS-based IG/TR clonality testing and gene mutation analysis. Given the significant therapeutic consequences, molecular testing of a presumed relapse in cHL is crucial for subsequent appropriate treatment strategies adapted to the specific lymphoma presentation.</p
    corecore