6 research outputs found

    40. Histone gene expression during mammalian spermatogenesis : structural and functional aspects

    No full text
    Volume: 166Start Page: 525End Page: 53

    In vitro

    No full text

    Spermatogenesis proceeds normally in mice without linker histone H1t

    No full text

    The diacylglycerol and protein kinase C pathways are not involved in insulin signalling in primary rat hepatocytes

    No full text
    Diacylglycerol (DAG) and protein kinase C (PKC) isoforms have been implicated in insulin signalling in muscle and fat cells. We evaluated the involvement of DAG and PKC in the action of insulin in adult rat hepatocytes cultured with dexamethasone, but in the absence of serum, for 48 h. Our results show that although insulin stimulated glycolysis and glycogen synthesis, it had no effect on DAG mass or molecular species composition. Epidermal growth factor showed the expected insulin-mimetic effect on glycolysis, whereas ATP and exogenous phospholipase C acted as antagonists and abolished the insulin signal. Similarly to insulin, epidermal growth factor had no effect on DAG mass or molecular species composition. In contrast, both ATP and phospholipase C induced a prominent increase in several DAG molecular species, including 18:0/20:4, 18:0/20:5, 18:0/22:5 and a decrease in 18:1/18:1. These changes were paralleled by an increase in phospholipase D activity, which was absent in insulin-treated cells. By immunoblotting or by measuring PKC activity, we found that neither insulin nor ATP translocated the PKCalpha, -delta, -epsilon or -zeta isoforms from the cytosol to the membrane in cells cultured for six or 48 h. Similarly, insulin had no effect on immunoprecipitable PKCzeta. Suppression of the glycogenic insulin signal by phorbol 12-myristate 13-acetate, but not by ATP, could be completely alleviated by bisindolylmaleimide. Finally, insulin showed no effect on DAG mass or translocation of PKC isoforms in the perfused liver, although it reduced the glucagon-stimulated glucose output by 75%. Together these results indicate that phospholipases C and D or multiple PKC isoforms are not involved in the hepatic insulin signal chai
    corecore