203 research outputs found
On complexity and convergence of high-order coordinate descent algorithms
Coordinate descent methods with high-order regularized models for
box-constrained minimization are introduced. High-order stationarity asymptotic
convergence and first-order stationarity worst-case evaluation complexity
bounds are established. The computer work that is necessary for obtaining
first-order -stationarity with respect to the variables of each
coordinate-descent block is whereas the computer
work for getting first-order -stationarity with respect to all the
variables simultaneously is . Numerical examples
involving multidimensional scaling problems are presented. The numerical
performance of the methods is enhanced by means of coordinate-descent
strategies for choosing initial points
Riemannian Sparse Coding for Positive Definite Matrices
International audienceInspired by the great success of sparse coding for vector valued data, our goal is to represent symmetric positive definite (SPD) data matrices as sparse linear combinations of atoms from a dictionary, where each atom itself is an SPD matrix. Since SPD matrices follow a non-Euclidean (in fact a Riemannian) geometry, existing sparse coding techniques for Euclidean data cannot be directly extended. Prior works have approached this problem by defining a sparse coding loss function using either extrinsic similarity measures (such as the log-Euclidean distance) or kernelized variants of statistical measures (such as the Stein divergence, Jeffrey's divergence, etc.). In contrast, we propose to use the intrinsic Riemannian distance on the manifold of SPD matrices. Our main contribution is a novel mathematical model for sparse coding of SPD matrices; we also present a computationally simple algorithm for optimizing our model. Experiments on several computer vision datasets showcase superior classification and retrieval performance compared with state-of-the-art approaches
Guaranteed clustering and biclustering via semidefinite programming
Identifying clusters of similar objects in data plays a significant role in a
wide range of applications. As a model problem for clustering, we consider the
densest k-disjoint-clique problem, whose goal is to identify the collection of
k disjoint cliques of a given weighted complete graph maximizing the sum of the
densities of the complete subgraphs induced by these cliques. In this paper, we
establish conditions ensuring exact recovery of the densest k cliques of a
given graph from the optimal solution of a particular semidefinite program. In
particular, the semidefinite relaxation is exact for input graphs corresponding
to data consisting of k large, distinct clusters and a smaller number of
outliers. This approach also yields a semidefinite relaxation for the
biclustering problem with similar recovery guarantees. Given a set of objects
and a set of features exhibited by these objects, biclustering seeks to
simultaneously group the objects and features according to their expression
levels. This problem may be posed as partitioning the nodes of a weighted
bipartite complete graph such that the sum of the densities of the resulting
bipartite complete subgraphs is maximized. As in our analysis of the densest
k-disjoint-clique problem, we show that the correct partition of the objects
and features can be recovered from the optimal solution of a semidefinite
program in the case that the given data consists of several disjoint sets of
objects exhibiting similar features. Empirical evidence from numerical
experiments supporting these theoretical guarantees is also provided
Implementation of an Optimal First-Order Method for Strongly Convex Total Variation Regularization
We present a practical implementation of an optimal first-order method, due
to Nesterov, for large-scale total variation regularization in tomographic
reconstruction, image deblurring, etc. The algorithm applies to -strongly
convex objective functions with -Lipschitz continuous gradient. In the
framework of Nesterov both and are assumed known -- an assumption
that is seldom satisfied in practice. We propose to incorporate mechanisms to
estimate locally sufficient and during the iterations. The mechanisms
also allow for the application to non-strongly convex functions. We discuss the
iteration complexity of several first-order methods, including the proposed
algorithm, and we use a 3D tomography problem to compare the performance of
these methods. The results show that for ill-conditioned problems solved to
high accuracy, the proposed method significantly outperforms state-of-the-art
first-order methods, as also suggested by theoretical results.Comment: 23 pages, 4 figure
Filter-based DIRECT method for constrained global optimization
This paper presents a DIRECT-type method that uses a filter methodology to assure convergence to a feasible and optimal solution of nonsmooth and nonconvex constrained global optimization problems. The filter methodology aims to give priority to the selection of hyperrectangles with feasible center points, followed by those with infeasible and non-dominated center points and finally by those that have infeasible and dominated center points. The convergence properties of the algorithm are analyzed. Preliminary numerical experiments show that the proposed filter-based DIRECT algorithm gives competitive results when compared with other DIRECT-type methods.The authors would like to thank two anonymous referees and the Associate Editor for their
valuable comments and suggestions to improve the paper.
This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT
- Fundac¸ao para a Ciência e Tecnologia within the projects UID/CEC/00319/2013 and ˆ
UID/MAT/00013/2013.info:eu-repo/semantics/publishedVersio
Accelerating gradient projection methods for -constrained signal recovery by steplength selection rules
We propose a new gradient projection algorithm that compares favorably with
the fastest algorithms available to date for -constrained sparse
recovery from noisy data, both in the compressed sensing and inverse problem
frameworks. The method exploits a line-search along the feasible direction and
an adaptive steplength selection based on recent strategies for the alternation
of the well-known Barzilai-Borwein rules. The convergence of the proposed
approach is discussed and a computational study on both well-conditioned and
ill-conditioned problems is carried out for performance evaluations in
comparison with five other algorithms proposed in the literature.Comment: 11 pages, 4 figure
Combining filter method and dynamically dimensioned search for constrained global optimization
In this work we present an algorithm that combines the filter technique and the dynamically dimensioned search (DDS) for solving nonlinear and nonconvex constrained global optimization problems. The DDS is a stochastic global algorithm for solving bound constrained problems that in each iteration generates a randomly trial point perturbing some coordinates of the current best point. The filter technique controls the progress related to optimality and feasibility defining a forbidden region of points refused by the algorithm. This region can be given by the flat or slanting filter rule. The proposed algorithm does not compute or approximate any derivatives of the objective and constraint functions. Preliminary experiments show that the proposed algorithm gives competitive results when compared with other methods.The first author thanks a scholarship supported by the International
Cooperation Program CAPES/ COFECUB at the University of Minho.
The second and third authors thanks the support given by FCT (Funda¸c˜ao para
Ciˆencia e Tecnologia, Portugal) in the scope of the projects: UID/MAT/00013/2013
and UID/CEC/00319/2013. The fourth author was partially supported by CNPq-Brazil
grants 308957/2014-8 and 401288/2014-5.info:eu-repo/semantics/publishedVersio
An artificial fish swarm filter-based Method for constrained global optimization
Ana Maria A.C. Rocha, M. Fernanda P. Costa and Edite M.G.P. Fernandes, An Artificial Fish Swarm Filter-Based Method for Constrained Global Optimization, B. Murgante, O. Gervasi, S. Mirsa, N. Nedjah, A.M. Rocha, D. Taniar, B. Apduhan (Eds.), Lecture Notes in Computer Science, Part III, LNCS 7335, pp. 57–71, Springer, Heidelberg, 2012.An artificial fish swarm algorithm based on a filter methodology
for trial solutions acceptance is analyzed for general constrained
global optimization problems. The new method uses the filter set concept
to accept, at each iteration, a population of trial solutions whenever
they improve constraint violation or objective function, relative to the
current solutions. The preliminary numerical experiments with a wellknown
benchmark set of engineering design problems show the effectiveness
of the proposed method.Fundação para a Ciência e a Tecnologia (FCT
Investigation of eighth-grade students' understanding of the slope of the linear function
This study aimed to investigate eighth-grade students' difficulties and misconceptions and their performance of translation between the different representation modes related to the slope of linear functions. The participants were 115 Turkish eighth-grade students in a city in the eastern part of the Black Sea region of Turkey. Data was collected with an instrument consisting of seven written questions and a semi-structured interview protocol conducted with six students. Students' responses to questions were categorized and scored. Quantitative data was analyzed using the SPSS 17.0 statistical packet program with cross tables and one-way ANOVA. Qualitative data obtained from interviews was analyzed using descriptive analytical techniques. It was found that students' performance in articulating the slope of the linear function using its algebraic representation form was higher than their performance in using transformation between graphical and algebraic representation forms. It was also determined that some of them had difficulties and misunderstood linear function equations, graphs, and slopes and could not comprehend the connection between slope and the x- and y-intercepts
- …