869 research outputs found

    Measurement of spin memory lengths in PdNi and PdFe ferromagnetic alloys

    Full text link
    Weakly ferromagnetic alloys are being used by several groups in the study of superconducting/ferromagnetic hybrid systems. Because spin-flip and spin-orbit scattering in such alloys disrupt the penetration of pair correlations into the ferromagnetic material, it is desirable to have a direct measurement of the spin memory length in such alloys. We have measured the spin memory length at 4.2 K in sputtered Pd0.88Ni0.12 and Pd0.987Fe0.013 alloys using methods based on current-perpendicular-to-plane giant magnetoresistance. The alloys are incorporated into hybrid spin valves of various types, and the spin memory length is determined by fits of the Valet-Fert spin-transport equations to data of magnetoresistance vs. alloy thickness. For the case of PdNi alloy, the resulting values of the spin memory length are lsf(PdNi) = 2.8 +/- 0.5 nm and 5.4 +/- 0.6 nm, depending on whether or not the PdNi is exchange biased by an adjacent Permalloy layer. For PdFe, the spin memory length is somewhat longer, lsf(PdFe) = 9.6 +/- 2 nm, consistent with earlier measurements indicating lower spin-orbit scattering in that material. Unfortunately, even the longer spin memory length in PdFe may not be long enough to facilitate observation of spin-triplet superconducting correlations predicted to occur in superconducting/ferromagnetic hybrid systems in the presence of magnetic inhomogeneity.Comment: 7 pages, 8 figure

    Spin Triplet Supercurrent in Co/Ni Multilayer Josephson Junctions with Perpendicular Anisotropy

    Full text link
    We have measured spin-triplet supercurrent in Josephson junctions of the form S/F'/F/F'/S, where S is superconducting Nb, F' is a thin Ni layer with in-plane magnetization, and F is a Ni/[Co/Ni]n multilayer with out-of-plane magnetization. The supercurrent in these junctions decays very slowly with F-layer thickness, and is much larger than in similar junctions not containing the two F' layers. Those two features are the characteristic signatures of spin-triplet supercurrent, which is maximized by the orthogonality of the magnetizations in the F and F' layers. Magnetic measurements confirm the out-of-plane anisotropy of the Co/Ni multilayers. These samples have their critical current optimized in the as-prepared state, which will be useful for future applications.Comment: 4 pages, 4 figures, formatted in RevTeX version 4. Submitted to Physical Review B on August 13th, 201

    Refining bounds for stochastic linear programs with linearly transformed independent random variables

    Full text link
    A linear stochastic program where the right-hand side elements are linear transformations of independent stochastic variables is considered. We show how bounds on the recouse (second-stage) problem can be found by working directly on the independent stochastic variables instead of the right-hand side elements.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26111/1/0000187.pd

    A polynomial oracle-time algorithm for convex integer minimization

    Full text link
    In this paper we consider the solution of certain convex integer minimization problems via greedy augmentation procedures. We show that a greedy augmentation procedure that employs only directions from certain Graver bases needs only polynomially many augmentation steps to solve the given problem. We extend these results to convex NN-fold integer minimization problems and to convex 2-stage stochastic integer minimization problems. Finally, we present some applications of convex NN-fold integer minimization problems for which our approach provides polynomial time solution algorithms.Comment: 19 pages, 1 figur

    Inconsistency of the MLE for the joint distribution of interval censored survival times and continuous marks

    Full text link
    This paper considers the nonparametric maximum likelihood estimator (MLE) for the joint distribution function of an interval censored survival time and a continuous mark variable. We provide a new explicit formula for the MLE in this problem. We use this formula and the mark specific cumulative hazard function of Huang and Louis (1998) to obtain the almost sure limit of the MLE. This result leads to necessary and sufficient conditions for consistency of the MLE which imply that the MLE is inconsistent in general. We show that the inconsistency can be repaired by discretizing the marks. Our theoretical results are supported by simulations.Comment: 27 pages, 4 figure

    Frequency dependent specific heat of viscous silica

    Full text link
    We apply the Mori-Zwanzig projection operator formalism to obtain an expression for the frequency dependent specific heat c(z) of a liquid. By using an exact transformation formula due to Lebowitz et al., we derive a relation between c(z) and K(t), the autocorrelation function of temperature fluctuations in the microcanonical ensemble. This connection thus allows to determine c(z) from computer simulations in equilibrium, i.e. without an external perturbation. By considering the generalization of K(t) to finite wave-vectors, we derive an expression to determine the thermal conductivity \lambda from such simulations. We present the results of extensive computer simulations in which we use the derived relations to determine c(z) over eight decades in frequency, as well as \lambda. The system investigated is a simple but realistic model for amorphous silica. We find that at high frequencies the real part of c(z) has the value of an ideal gas. c'(\omega) increases quickly at those frequencies which correspond to the vibrational excitations of the system. At low temperatures c'(\omega) shows a second step. The frequency at which this step is observed is comparable to the one at which the \alpha-relaxation peak is observed in the intermediate scattering function. Also the temperature dependence of the location of this second step is the same as the one of the α−\alpha-peak, thus showing that these quantities are intimately connected to each other. From c'(\omega) we estimate the temperature dependence of the vibrational and configurational part of the specific heat. We find that the static value of c(z) as well as \lambda are in good agreement with experimental data.Comment: 27 pages of Latex, 8 figure

    Acoustic and relaxation processes in supercooled o-ter-phenyl by optical-heterodyne transient grating experiment

    Full text link
    The dynamics of the fragile glass-forming o-ter-phenyl is investigated by time-resolved transient grating experiment with an heterodyne detection technique in a wide temperature range. We investigated the dynamics processes of this glass-former over more then 6 decades in time with an excellent signal/noise. Acoustic, structural and thermal relaxations have been clearly identify and measured in a time-frequency window not covered by previous spectroscopic investigations. A detailed comparison with the density response function, calculated on the basis of generalized hydrodynamics model, has been worked out
    • 

    corecore