18,679 research outputs found

    Development during adolescence of the neural processing of social emotion

    Get PDF
    In this fMRI study, we investigated the development between adolescence and adulthood of the neural processing of social emotions. Unlike basic emotions (such as disgust and fear), social emotions (such as guilt and embarrassment) require the representation of another's mental states. Nineteen adolescents (10–18 years) and 10 adults (22–32 years) were scanned while thinking about scenarios featuring either social or basic emotions. In both age groups, the anterior rostral medial prefrontal cortex (MPFC) was activated during social versus basic emotion. However, adolescents activated a lateral part of the MPFC for social versus basic emotions, whereas adults did not. Relative to adolescents, adults showed higher activity in the left temporal pole for social versus basic emotions. These results show that, although the MPFC is activated during social emotion in both adults and adolescents, adolescents recruit anterior (MPFC) regions more than do adults, and adults recruit posterior (temporal) regions more than do adolescents

    Structural Relaxation and Mode Coupling in a Simple Liquid: Depolarized Light Scattering in Benzene

    Full text link
    We have measured depolarized light scattering in liquid benzene over the whole accessible temperature range and over four decades in frequency. Between 40 and 180 GHz we find a susceptibility peak due to structural relaxation. This peak shows stretching and time-temperature scaling as known from α\alpha relaxation in glass-forming materials. A simple mode-coupling model provides consistent fits of the entire data set. We conclude that structural relaxation in simple liquids and α\alpha relaxation in glass-forming materials are physically the same. A deeper understanding of simple liquids is reached by applying concepts that were originally developed in the context of glass-transition research.Comment: submitted to New J. Phy

    Speech and language difficulties in children with and without a family history of dyslexia

    Get PDF
    Comorbidity between SLI and dyslexia is well documented. Researchers have variously argued that dyslexia is a separate disorder from SLI, or that children with dyslexia show a subset of the difficulties shown in SLI. This study examines these hypotheses by assessing whether family history of dyslexia and speech and language difficulties are separable risk factors for literacy difficulties. Forty-six children with a family risk of dyslexia (FRD) and 36 children receiving speech therapy (SLT) were compared to 128 typically developing children. A substantial number (41.3%) of the children with FRD had received SLT. The nature of their difficulties did not differ in severity or form from those shown by the other children in SLT. However, both SLT and FRD were independent risk factors in predicting reading difficulties both concurrently and 6 months later. It is argued that the results are best explained in terms of Pennington's (2006) multiple deficits model

    Thermodiffusion in model nanofluids by molecular dynamics simulations

    Full text link
    In this work, a new algorithm is proposed to compute single particle (infinite dilution) thermodiffusion using Non-Equilibrium Molecular Dynamics simulations through the estimation of the thermophoretic force that applies on a solute particle. This scheme is shown to provide consistent results for simple Lennard-Jones fluids and for model nanofluids (spherical non-metallic nanoparticles + Lennard-Jones fluid) where it appears that thermodiffusion amplitude, as well as thermal conductivity, decrease with nanoparticles concentration. Then, in nanofluids in the liquid state, by changing the nature of the nanoparticle (size, mass and internal stiffness) and of the solvent (quality and viscosity) various trends are exhibited. In all cases the single particle thermodiffusion is positive, i.e. the nanoparticle tends to migrate toward the cold area. The single particle thermal diffusion 2 coefficient is shown to be independent of the size of the nanoparticle (diameter of 0.8 to 4 nm), whereas it increases with the quality of the solvent and is inversely proportional to the viscosity of the fluid. In addition, this coefficient is shown to be independent of the mass of the nanoparticle and to increase with the stiffness of the nanoparticle internal bonds. Besides, for these configurations, the mass diffusion coefficient behavior appears to be consistent with a Stokes-Einstein like law

    Is resilience a normative concept?

    Get PDF
    In this paper, we engage with the question of the normative content of the resilience concept. The issues are approached in two consecutive steps. First, we proceed from a narrow construal of the resilience concept – as the ability of a system to absorb a disturbance – and show that under an analysis of normative concepts as evaluative concepts resilience comes out as descriptive. In the second part of the paper, we argue that (1) for systems of interest (primarily social systems or system with a social component) we seem to have options with respect to how they are described and (2) that this matters for what is to be taken as a sign of resilience as opposed to a sign of the lack of resilience for such systems. We discuss the implications of this for how the concept should be applied in practice and suggest that users of the resilience concept face a choice between versions of the concept that are either ontologically or normatively charged

    The effects of organic farming on the soil physical environment

    Get PDF
    The aim of this research was to investigate the effects of organic farming practices on the development of soil physical properties, and in particular, soil structure in comparison with conventional agricultural management. The soil structure of organically and conventionally managed soils at one site was compared in a quantitative manner at different scales of observations using image analysis. Key soil physical and chemical properties were measured as well as the pore fractal geometry to characterise pore roughness. Organically managed soils had higher organic matter content and provided a more stable soil structure than conventionally managed soils. The higher porosity (%) at the macroscale in soil under conventional management was due to fewer larger pores while mesoand microscale porosity was found to be greater under organic management. Organically managed soils typically provided spatially well distributed pores of all sizes and of greater roughness compared to those under conventional management. These variations in the soil physical environment are likely to impact significantly on the performance of these soils for a number of key processes such as crop establishment and water availabilit

    Infrared identification of IGR J09026-4812 as a Seyfert 1 galaxy

    Full text link
    IGR J09026-4812 was discovered by INTEGRAL in 2006 as a new hard X-ray source. Thereafter, an observation with Chandra pinpointed a single X-ray source within the ISGRI error circle, showing a hard spectrum, and improving its high-energy localisation to a subarcsecond accuracy. Thus, the X-ray source was associated to the infrared counterpart 2MASS J09023731-4813339 whose JHKs photometry indicated a highly reddened source. The high-energy properties and the counterpart photometry suggested a high-mass X-ray binary with a main sequence companion star located 6.3-8.1 kpc away and with a 0.3-10 keV luminosity of 8e34 erg/s. New optical and infrared observations were needed to confirm the counterpart and to reveal the nature of IGR J09026-4812. We performed optical and near infrared observations on the counterpart 2MASS J09023731-4813339 with the ESO/NTT telescope on March 2007. We achieved photometry and spectroscopy in near infrared wavelengths and photometry in optical wavelengths. The accurate astrometry at both optical and near infrared wavelengths confirmed 2MASS J09023731-4813339 to be the counterpart of IGR J09026-4812. However, the near infrared images show that the source is extended, thus excluding any Galactic compact source possibility. The source spectrum shows three main emission lines identified as the HeI lambda 1.0830 micron line, and the HI Pa_beta and Pa_alpha lines, typical in galaxies with an active galactic nucleus. The broadness of these lines reached values as large as 4000 km/s pointing towards a type 1 Seyfert galaxy. The redshift of the source is z=0.0391(4). Thus, the near infrared photometry and spectroscopy allowed us to classify IGR J09026-4812 as a Seyfert galaxy of type 1.Comment: 4 pages, 3 figures, Astronomy and Astrophysics in pres
    • …
    corecore