16,420 research outputs found
Social attitudes modulate automatic imitation
In naturalistic interpersonal settings, mimicry or ‘automatic imitation’ generates liking, affiliation, cooperation and other positive social attitudes. The purpose of this study was to find out whether the relationship between social attitudes and mimicry is bidirectional: Do social attitudes have a direct and specific effect on mimicry? Participants were primed with pro-social, neutral or anti-social words in a scrambled sentence task. They were then tested for mimicry using a stimulus-response compatibility procedure. In this procedure, participants were required to perform a pre-specified movement (e.g. opening their hand) on presentation of a compatible (open) or incompatible (close) hand movement. Reaction time data were collected using electromyography (EMG) and the magnitude of the mimicry / automatic imitation effect was calculated by subtracting reaction times on compatible trials from those on incompatible trials. Pro-social priming produced a larger automatic imitation effect than anti-social priming, indicating that the relationship between mimicry and social attitudes is bidirectional, and that social attitudes have a direct and specific effect on the tendency to imitate behavior without intention or conscious awareness
Competing Quantum Orderings in Cuprate Superconductors: A Minimal Model
We present a minimal model for cuprate superconductors. At the unrestricted
mean-field level, the model produces homogeneous superconductivity at large
doping, striped superconductivity in the underdoped regime and various
antiferromagnetic phases at low doping and for high temperatures. On the
underdoped side, the superconductor is intrinsically inhomogeneous and global
phase coherence is achieved through Josephson-like coupling of the
superconducting stripes. The model is applied to calculate experimentally
measurable ARPES spectra.Comment: 5 pages, 4 eps included figure
Development during adolescence of the neural processing of social emotion
In this fMRI study, we investigated the development between adolescence and adulthood of the neural processing of social emotions. Unlike basic emotions (such as disgust and fear), social emotions (such as guilt and embarrassment) require the representation of another's mental states. Nineteen adolescents (10–18 years) and 10 adults (22–32 years) were scanned while thinking about scenarios featuring either social or basic emotions. In both age groups, the anterior rostral medial prefrontal cortex (MPFC) was activated during social versus basic emotion. However, adolescents activated a lateral part of the MPFC for social versus basic emotions, whereas adults did not. Relative to adolescents, adults showed higher activity in the left temporal pole for social versus basic emotions. These results show that, although the MPFC is activated during social emotion in both adults and adolescents, adolescents recruit anterior (MPFC) regions more than do adults, and adults recruit posterior (temporal) regions more than do adolescents
Mechanism of margination in confined flows of blood and other multicomponent suspensions
Flowing blood displays a phenomenon called margination, in which leukocytes
and platelets are preferentially found near blood vessel walls, while
erythrocytes are depleted from these regions. Here margination is investigated
using direct hydrodynamic simulations of a binary suspension of stiff (s) and
floppy (f) capsules, as well as a stochastic model that incorporates the key
particle transport mechanisms in suspensions -- wall-induced hydrodynamic
migration and shear-induced pair collisions. The stochastic model allows the
relative importance of these two mechanisms to be directly evaluated and
thereby indicates that margination, at least in the dilute case, is largely due
to the differential dynamics of homogeneous (e.g. s-s) and heterogeneous (s-f)
collisionsComment: 5 Pages, 4 figure
Structural Relaxation and Mode Coupling in a Simple Liquid: Depolarized Light Scattering in Benzene
We have measured depolarized light scattering in liquid benzene over the
whole accessible temperature range and over four decades in frequency. Between
40 and 180 GHz we find a susceptibility peak due to structural relaxation. This
peak shows stretching and time-temperature scaling as known from
relaxation in glass-forming materials. A simple mode-coupling model provides
consistent fits of the entire data set. We conclude that structural relaxation
in simple liquids and relaxation in glass-forming materials are
physically the same. A deeper understanding of simple liquids is reached by
applying concepts that were originally developed in the context of
glass-transition research.Comment: submitted to New J. Phy
Electron Dynamics in a Coupled Quantum Point Contact Structure with a Local Magnetic Moment
We develop a theoretical model for the description of electron dynamics in
coupled quantum wires when the local magnetic moment is formed in one of the
wires. We employ a single-particle Hamiltonian that takes account of the
specific geometry of potentials defining the structure as well as electron
scattering on the local magnetic moment. The equations for the wave functions
in both wires are derived and the approach for their solution is discussed. We
determine the transmission coefficient and conductance of the wire having the
local magnetic moment and show that our description reproduces the
experimentally observed features.Comment: Based on work presented at 2004 IEEE NTC Quantum Device Technology
Worksho
Auroral thermosphere temperatures from observations of 6300 A emissions
Doppler temperatures determined from observations of the atomic oxygen OI 6300 A line during March 1984 at the University of Alaska/Fairbanks are presented. Temperatures are obtained from Fabry-Perot Interferometer pressure scans using a Fourier transform smoothing and fitting technique; this technique is presented in detail. The temperatures and the spread in the temperatures are consistent from day to day. On the clear nights of March 10 to 13, the temperatures were 800, 750, 750 and 800 K, respectively, with a spread of + or - 100 K. These temperatures are compared to the MSIS (84) model atmosphere for similar geomagnetic conditions and found to be in general agreement; they are also consistent with results obtained by other investigators
Angular velocity distribution of a granular planar rotator in a thermalized bath
The kinetics of a granular planar rotator with a fixed center undergoing
inelastic collisions with bath particles is analyzed both numerically and
analytically by means of the Boltzmann equation. The angular velocity
distribution evolves from quasi-gaussian in the Brownian limit to an algebraic
decay in the limit of an infinitely light particle. In addition, we compare
this model with a planar rotator with a free center. We propose experimental
tests that might confirm the predicted behaviors.Comment: 10 Pages, 9 Figure
- …