6 research outputs found
Computational and phylogenetic validation of nematode horizontal gene transfer
Sequencing of expressed genes has shown that nematodes, particularly the plant-parasitic nematodes, have genes purportedly acquired from other kingdoms by horizontal gene transfer. The prevailing orthodoxy is that such transfer has been a driving force in the evolution of niche specificity, and a recent paper in BMC Evolutionary Biology that presents a detailed phylogenetic analysis of cellulase genes in the free-living nematode Pristionchus pacificus at the species, genus and family levels substantiates this hypothesis
Root-Knot Nematodes Exhibit Strain-Specific Clumping Behavior That Is Inherited as a Simple Genetic Trait
Root-knot nematodes are obligate parasites of a wide range of plant species and can feed only on the cytoplasm of living plant cells. In the absence of a suitable plant host, infective juveniles of strain VW9 of the Northern root-knot nematode, Meloidogyne hapla, when dispersed in Pluronic F-127 gel, aggregate into tight, spherical clumps containing thousands of worms. Aggregation or clumping behavior has been observed in diverse genera in the phylum Nematoda spanning free-living species such as Caenorhabditis elegans as well as both plant and animal parasites. Clumping behavior differs between strains of M. hapla and occurs with other species within this genus where strain-specific differences in clumping ability are also apparent. Exposure of M. hapla juveniles to a gradient formed using low levels of cyanide promotes formation of clumps at a preferred cyanide level. Analysis of F2 lines from a cross of M. hapla strains that differ in clump-forming behavior reveals that the behavior segregates as a single, major locus that can be positioned on the genetic map of this nematode. Clumping behavior may be a survival strategy whose importance and function depend on the niche of the nematode strain or species
Analysis of Gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways
<p>Abstract</p> <p>Background</p> <p>Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site.</p> <p>Results</p> <p>We examined the expression of soybean (<it>Glycine max</it>) genes in galls formed in roots by the root-knot nematode, <it>Meloidogyne incognita</it>, 12 days and 10 weeks after infection to understand the effects of infection of roots by <it>M. incognita</it>. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 <it>G. max </it>probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered.</p> <p>Conclusions</p> <p>A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between <it>M. incognita </it>and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.</p
The Role of Plant Hormones in Nematode Feeding Cell Formation
In this Chapter, we discuss recent advances in the role of plant hormones in the molecular mechanisms underlying feeding cell formation both by cyst (CN) and root-knot nematodes (RKN). Phytohormones are small signalling molecules that regulate plant growth and development, including the formation of highly specialized root structures like nematode feeding cells. High-throughput transcriptome profiling has facilitated the identification of an increasing number of novel hormone related genes that are differentially expressed during feeding cell development. Together with dedicated functional studies, a picture has emerged which points to plant hormones playing an important role in the reprogramming of gene expression patterns upon nematode infection. Here, we present a comprehensive overview of the role of classical plant hormones, including cytokinin, auxin and ethylene, in the establishment of nematode-induced regulatory networks upon infection of plant roots. We also discuss the role of small peptides as a novel class in plant hormone signalling during feeding cell formatio