13,416 research outputs found
A PARAMETRIC INVESTIGATION OF THE LUNAR-ORBIT-RENDEZVOUS SCHEME
Lunar orbit rendezvous scheme - mission analysi
Polymeric filament thinning and breakup in microchannels
The effects of elasticity on filament thinning and breakup are investigated
in microchannel cross flow. When a viscous solution is stretched by an external
immiscible fluid, a low 100 ppm polymer concentration strongly affects the
breakup process, compared to the Newtonian case. Qualitatively, polymeric
filaments show much slower evolution, and their morphology features multiple
connected drops. Measurements of filament thickness show two main temporal
regimes: flow- and capillary-driven. At early times both polymeric and
Newtonian fluids are flow-driven, and filament thinning is exponential. At
later times, Newtonian filament thinning crosses over to a capillary-driven
regime, in which the decay is algebraic. By contrast, the polymeric fluid first
crosses over to a second type of flow-driven behavior, in which viscoelastic
stresses inside the filament become important and the decay is again
exponential. Finally, the polymeric filament becomes capillary-driven at late
times with algebraic decay. We show that the exponential flow thinning behavior
allows a novel measurement of the extensional viscosities of both Newtonian and
polymeric fluids.Comment: 7 pages, 7 figure
Selected localities in the Taconics and their implications for the plate tectonic origin of the Taconic region
Guidebook for field trips in western Massachusetts, northern Connecticut and adjacent areas of New York: 67th annual meeting October 10, 11, and 12, 1975: Trip B-1; C-
Towards a portable and future-proof particle-in-cell plasma physics code
We present the first reported OpenCL implementation of EPOCH3D, an extensible particle-in-cell plasma physics code developed at the University of Warwick. We document the challenges and successes of this porting effort, and compare the performance of our implementation executing on a wide variety of hardware from multiple vendors. The focus of our work is on understanding the suitability of existing algorithms for future accelerator-based architectures, and identifying the changes necessary to achieve performance portability for particle-in-cell plasma physics codes.
We achieve good levels of performance with limited changes to the algorithmic behaviour of the code. However, our results suggest that a fundamental change to EPOCH3Dās current accumulation step (and its dependency on atomic operations) is necessary in order to fully utilise the massive levels of parallelism supported by emerging parallel architectures
The evolution of pebble size and shape in space and time
We propose a mathematical model which suggests that the two main geological
observations about shingle beaches, i.e. the emergence of predominant pebble
size ratios and strong segregation by size are interrelated. Our model is a
based on a system of ODEs called the box equations, describing the evolution of
pebble ratios. We derive these ODEs as a heuristic approximation of Bloore's
PDE describing collisional abrasion. While representing a radical
simplification of the latter, our system admits the inclusion of additional
terms related to frictional abrasion. We show that nontrivial attractors
(corresponding to predominant pebble size ratios) only exist in the presence of
friction. By interpreting our equations as a Markov process, we illustrate by
direct simulation that these attractors may only stabilized by the ongoing
segregation process.Comment: 22 pages, 8 figure
- ā¦