345 research outputs found
Development of a human factors hazard model for use in system safety analysis
2021 Fall.Includes bibliographical references.Traditional methods for Human Reliability Analysis (HRA) have been developed with specific applications or industries in mind. Additionally, these methods are often complicated, time consuming, costly to apply, and are not suitable for direct comparison amongst themselves. The proposed Human Factors Hazard Model (HFHM) utilizes the established and time-tested probabilistic analysis tools of Fault Tree Analysis (FTA) and Event Tree Analysis (ETA), and integrates them with a newly developed Human Error Probability (HEP) predictive tool. This new approach is developed around Performance Shaping Factors (PSFs) relevant to human behavior, as well as specific characteristics unique to a system architecture and its corresponding operational behavior. This updated approach is intended to standardize, simplify, and automate the approach to modeling the likelihood of a mishap due to a human-system interaction during a hazard event. The HFHM is exemplified and automated within a commercial software tool such that trade and sensitivity studies can be conducted and validated easily. The analysis results generated by the HFHM can be used as a standardized guide to SE analysts as a well as design engineers with regards to risk assessment, safety requirements, design options, and needed safety controls within the system architecture. Verification and evaluation of the HFHM indicate that it is an effective tool for HRA and system safety with results that accurately predict HEP values that can guide design efforts with respect to human factors. In addition to the development and automation of the HFHM, application within commonly used system safety Hazard Analysis Techniques (HATs) is established. Specific utilization of the HFHM within system or subsystem level FTA and Failure Mode and Effects Analysis (FMEA) is established such that human related hazards can more accurately be accounted for in system design safety analysis and lifecycle management. Lastly, integration of the HFHM within Model-Based System Engineering (MBSE) emphasizing an implementation into the System Modeling Language (SysML) is established using a combination of existing hazard analysis libraries and custom designed libraries within the Unified Modeling Language (UML). The FTA / ETA components of the hazard model are developed within SysML partially utilizing the RAAML (Risk Analysis and Assessment Modeling Language) currently under development by the Object Management Group (OMG), as well as a unique recursive analysis library. The SysML model successfully replicates the probabilistic calculation results of the HFHM as generated by the native analytical model. The SysML profiles developed to implement HFHM have application in integration of conventional system safety analysis as well as requirements engineering within lifecycle management
Human Reliability Analysis using a Human Factors Hazard Model
Human Reliability Analysis (HRA) has found application within a diverse set of engineering domains, but the methods used to apply HRA are often complicated, time-consuming, costly to apply, specific to particular (i.e., nuclear) applications, and are not suitable for direct comparison amongst themselves.
This paper proposes a Human Factors Hazard Model (HFHM), which builds an HRA method from the tools of Fault Tree Analysis (FTA), Event Tree Analysis (ETA), and a novel model of considering serial Human Error Probability (HEP) more relevant to psychomotor-intensive industrial and commercial applications such as manufacturing, teleoperation, and vehicle operation. The HEP approach uses Performance Shaping Factors (PSFs) relevant to human behavior, as well as specific characteristics unique to a system architecture and its corresponding operational behavior. The HFHM tool is intended to establish a common analysis approach, to simplify and automate the modeling of the likelihood of a mishap due to a human-system interaction during a hazard event.
The HFHM is executed commercial software tools (MS Excel and SysML) such that trade and sensitivity studies can be conducted and iterated automatically. The results generated by the HFHM can be used to guide risk assessment, safety requirements generation and management, design options, and safety controls within the system design architecting process. Verification and evaluation of the HFHM through simulation and subject matter expert evaluation illustrate the value of the HFHM as a tool for HRA and system safety analysis in a set of key industrial applications
Open Source Antenna Pattern Measurement System
WSU Applied Engineering Project to increase Radio Frequency (RF) measurement capability for student laboratories and senior projects. Integrate a software-defined-radio (SDR) to a portable, motor-controlled antenna positioning system
Multidifferential study of identified charged hadron distributions in -tagged jets in proton-proton collisions at 13 TeV
Jet fragmentation functions are measured for the first time in proton-proton
collisions for charged pions, kaons, and protons within jets recoiling against
a boson. The charged-hadron distributions are studied longitudinally and
transversely to the jet direction for jets with transverse momentum 20 GeV and in the pseudorapidity range . The
data sample was collected with the LHCb experiment at a center-of-mass energy
of 13 TeV, corresponding to an integrated luminosity of 1.64 fb. Triple
differential distributions as a function of the hadron longitudinal momentum
fraction, hadron transverse momentum, and jet transverse momentum are also
measured for the first time. This helps constrain transverse-momentum-dependent
fragmentation functions. Differences in the shapes and magnitudes of the
measured distributions for the different hadron species provide insights into
the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb
public pages
Study of the decay
The decay is studied
in proton-proton collisions at a center-of-mass energy of TeV
using data corresponding to an integrated luminosity of 5
collected by the LHCb experiment. In the system, the
state observed at the BaBar and Belle experiments is
resolved into two narrower states, and ,
whose masses and widths are measured to be where the first uncertainties are statistical and the second
systematic. The results are consistent with a previous LHCb measurement using a
prompt sample. Evidence of a new
state is found with a local significance of , whose mass and width
are measured to be and , respectively. In addition, evidence of a new decay mode
is found with a significance of
. The relative branching fraction of with respect to the
decay is measured to be , where the first
uncertainty is statistical, the second systematic and the third originates from
the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb
public pages
Measurement of the ratios of branching fractions and
The ratios of branching fractions
and are measured, assuming isospin symmetry, using a
sample of proton-proton collision data corresponding to 3.0 fb of
integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The
tau lepton is identified in the decay mode
. The measured values are
and
, where the first uncertainty is
statistical and the second is systematic. The correlation between these
measurements is . Results are consistent with the current average
of these quantities and are at a combined 1.9 standard deviations from the
predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb
public pages
Helen Pitt Triennial Awards Exhibition 2001
The catalogue for the Helen Pitt Triennial Awards exhibition for the years 1999-2001 features the work of nineteen emerging artists who received the award upon graduation from a British Columbian art school. Each artist has a brief text describing the work. The prefacers comment on the origin and evolution of the awards. List of award recipients and runners-up (1999-2001). Brief biographical notes. 1 bibl. ref
- …