345 research outputs found

    Development of a human factors hazard model for use in system safety analysis

    Get PDF
    2021 Fall.Includes bibliographical references.Traditional methods for Human Reliability Analysis (HRA) have been developed with specific applications or industries in mind. Additionally, these methods are often complicated, time consuming, costly to apply, and are not suitable for direct comparison amongst themselves. The proposed Human Factors Hazard Model (HFHM) utilizes the established and time-tested probabilistic analysis tools of Fault Tree Analysis (FTA) and Event Tree Analysis (ETA), and integrates them with a newly developed Human Error Probability (HEP) predictive tool. This new approach is developed around Performance Shaping Factors (PSFs) relevant to human behavior, as well as specific characteristics unique to a system architecture and its corresponding operational behavior. This updated approach is intended to standardize, simplify, and automate the approach to modeling the likelihood of a mishap due to a human-system interaction during a hazard event. The HFHM is exemplified and automated within a commercial software tool such that trade and sensitivity studies can be conducted and validated easily. The analysis results generated by the HFHM can be used as a standardized guide to SE analysts as a well as design engineers with regards to risk assessment, safety requirements, design options, and needed safety controls within the system architecture. Verification and evaluation of the HFHM indicate that it is an effective tool for HRA and system safety with results that accurately predict HEP values that can guide design efforts with respect to human factors. In addition to the development and automation of the HFHM, application within commonly used system safety Hazard Analysis Techniques (HATs) is established. Specific utilization of the HFHM within system or subsystem level FTA and Failure Mode and Effects Analysis (FMEA) is established such that human related hazards can more accurately be accounted for in system design safety analysis and lifecycle management. Lastly, integration of the HFHM within Model-Based System Engineering (MBSE) emphasizing an implementation into the System Modeling Language (SysML) is established using a combination of existing hazard analysis libraries and custom designed libraries within the Unified Modeling Language (UML). The FTA / ETA components of the hazard model are developed within SysML partially utilizing the RAAML (Risk Analysis and Assessment Modeling Language) currently under development by the Object Management Group (OMG), as well as a unique recursive analysis library. The SysML model successfully replicates the probabilistic calculation results of the HFHM as generated by the native analytical model. The SysML profiles developed to implement HFHM have application in integration of conventional system safety analysis as well as requirements engineering within lifecycle management

    Human Reliability Analysis using a Human Factors Hazard Model

    Get PDF
    Human Reliability Analysis (HRA) has found application within a diverse set of engineering domains, but the methods used to apply HRA are often complicated, time-consuming, costly to apply, specific to particular (i.e., nuclear) applications, and are not suitable for direct comparison amongst themselves. This paper proposes a Human Factors Hazard Model (HFHM), which builds an HRA method from the tools of Fault Tree Analysis (FTA), Event Tree Analysis (ETA), and a novel model of considering serial Human Error Probability (HEP) more relevant to psychomotor-intensive industrial and commercial applications such as manufacturing, teleoperation, and vehicle operation. The HEP approach uses Performance Shaping Factors (PSFs) relevant to human behavior, as well as specific characteristics unique to a system architecture and its corresponding operational behavior. The HFHM tool is intended to establish a common analysis approach, to simplify and automate the modeling of the likelihood of a mishap due to a human-system interaction during a hazard event. The HFHM is executed commercial software tools (MS Excel and SysML) such that trade and sensitivity studies can be conducted and iterated automatically. The results generated by the HFHM can be used to guide risk assessment, safety requirements generation and management, design options, and safety controls within the system design architecting process. Verification and evaluation of the HFHM through simulation and subject matter expert evaluation illustrate the value of the HFHM as a tool for HRA and system safety analysis in a set of key industrial applications

    Open Source Antenna Pattern Measurement System

    Get PDF
    WSU Applied Engineering Project to increase Radio Frequency (RF) measurement capability for student laboratories and senior projects. Integrate a software-defined-radio (SDR) to a portable, motor-controlled antenna positioning system

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Helen Pitt Triennial Awards Exhibition 2001

    No full text
    The catalogue for the Helen Pitt Triennial Awards exhibition for the years 1999-2001 features the work of nineteen emerging artists who received the award upon graduation from a British Columbian art school. Each artist has a brief text describing the work. The prefacers comment on the origin and evolution of the awards. List of award recipients and runners-up (1999-2001). Brief biographical notes. 1 bibl. ref
    corecore