238 research outputs found

    The dependence of strange hadron multiplicities on the speed of hadronization

    Get PDF
    Hadron multiplicities are calculated in the ALCOR model for the Pb+Pb collisions at CERN SPS energy. Considering the newest experimental results, we display our prediction obtained from the ALCOR model for stable hadrons including strange baryons and anti-baryons.Comment: 8 pages, LaTeX in IOP style, appeared in the Proceedings of Strangeness'97 Conference, Santorini, April 14-18 1997, J. of Physics G23 (1997) 194

    Strange hyperon and antihyperon production from quark and string-rope matter

    Get PDF
    Hyperon and antihyperon production is investigated using two microscopical models: {\bf (1)} the fast hadronization of quark matter as given by the ALCOR model; {\bf (2)} string formation and fragmentation as in the HIJING/B model. We calculate the particle numbers and momentum distributions for Pb+Pb collisions at CERN SPS energies in order to compare the two models with each other and with the available experimental data. We show that these two theoretical approaches give similar yields for the hyperons, but strongly differ for antihyperons.Comment: 11 pages, Latex, 3 EPS figures, contribution to the Proceedings of the 4th International Conference on Strangeness in Quark Matter (SQM'98), Padova, Italy, 20-24 July 199

    Pion and Kaon Spectra from Distributed Mass Quark Matter

    Full text link
    After discussing some hints for possible masses of quasiparticles in quark matter on the basis of lattice equation of state, we present pion and kaon transverse spectra obtained by recombining quarks with distributed mass and thermal cut power-law momenta as well as fragmenting by NLO pQCD with intrinsic kTk_T {and nuclear} broadening.Comment: Talk given at SQM 200

    Stable marriage and roommates problems with restricted edges: complexity and approximability

    Get PDF
    In the Stable Marriage and Roommates problems, a set of agents is given, each of them having a strictly ordered preference list over some or all of the other agents. A matching is a set of disjoint pairs of mutually acceptable agents. If any two agents mutually prefer each other to their partner, then they block the matching, otherwise, the matching is said to be stable. We investigate the complexity of finding a solution satisfying additional constraints on restricted pairs of agents. Restricted pairs can be either forced or forbidden. A stable solution must contain all of the forced pairs, while it must contain none of the forbidden pairs. Dias et al. (2003) gave a polynomial-time algorithm to decide whether such a solution exists in the presence of restricted edges. If the answer is no, one might look for a solution close to optimal. Since optimality in this context means that the matching is stable and satisfies all constraints on restricted pairs, there are two ways of relaxing the constraints by permitting a solution to: (1) be blocked by as few as possible pairs, or (2) violate as few as possible constraints n restricted pairs. Our main theorems prove that for the (bipartite) Stable Marriage problem, case (1) leads to View the MathML source-hardness and inapproximability results, whilst case (2) can be solved in polynomial time. For non-bipartite Stable Roommates instances, case (2) yields an View the MathML source-hard but (under some cardinality assumptions) 2-approximable problem. In the case of View the MathML source-hard problems, we also discuss polynomially solvable special cases, arising from restrictions on the lengths of the preference lists, or upper bounds on the numbers of restricted pairs

    The Stable Roommates problem with short lists

    Full text link
    We consider two variants of the classical Stable Roommates problem with Incomplete (but strictly ordered) preference lists SRI that are degree constrained, i.e., preference lists are of bounded length. The first variant, EGAL d-SRI, involves finding an egalitarian stable matching in solvable instances of SRI with preference lists of length at most d. We show that this problem is NP-hard even if d=3. On the positive side we give a (2d+3)/7-approximation algorithm for d={3,4,5} which improves on the known bound of 2 for the unbounded preference list case. In the second variant of SRI, called d-SRTI, preference lists can include ties and are of length at most d. We show that the problem of deciding whether an instance of d-SRTI admits a stable matching is NP-complete even if d=3. We also consider the "most stable" version of this problem and prove a strong inapproximability bound for the d=3 case. However for d=2 we show that the latter problem can be solved in polynomial time.Comment: short version appeared at SAGT 201

    Hadronization of massive quark matter

    Get PDF
    We present a fast hadronization model for the constituent quark plasma (CQP) produced in relativistic heavy ion collisions at SPS. The model is based on rate equations and on an equation of state inspired by the string phenomenology. This equation of state has a confining character. We display the time evolution of the relevant physical quantities during the hadronization process and the final hadron multiplicities. The results indicate that the hadronization of CQP is fast.Comment: 12 pages, Latex, 2 EPS figures, contribution to the Proceedings of the 4th International Conference on Strangeness in Quark Matter (SQM'98), Padova, Italy, 20-24 July 199
    corecore