6 research outputs found

    The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls

    Get PDF
    Background: Mood disorders (including major depressive disorder and bipolar disorder) affect 10% to 20% of the population. They range from brief, mild episodes to severe, incapacitating conditions that markedly impact lives. Multiple approaches have shown considerable sharing of risk factors across mood disorders despite their diagnostic distinction. / Methods: To clarify the shared molecular genetic basis of major depressive disorder and bipolar disorder and to highlight disorder-specific associations, we meta-analyzed data from the latest Psychiatric Genomics Consortium genome-wide association studies of major depression (including data from 23andMe) and bipolar disorder, and an additional major depressive disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; nonoverlapping N = 609,424). / Results: Seventy-three loci reached genome-wide significance in the meta-analysis, including 15 that are novel for mood disorders. More loci from the Psychiatric Genomics Consortium analysis of major depression than from that for bipolar disorder reached genome-wide significance. Genetic correlations revealed that type 2 bipolar disorder correlates strongly with recurrent and single-episode major depressive disorder. Systems biology analyses highlight both similarities and differences between the mood disorders, particularly in the mouse brain cell types implicated by the expression patterns of associated genes. The mood disorders also differ in their genetic correlation with educational attainment—the relationship is positive in bipolar disorder but negative in major depressive disorder. / Conclusions: The mood disorders share several genetic associations, and genetic studies of major depressive disorder and bipolar disorder can be combined effectively to enable the discovery of variants not identified by studying either disorder alone. However, we demonstrate several differences between these disorders. Analyzing subtypes of major depressive disorder and bipolar disorder provides evidence for a genetic mood disorders spectrum

    Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders

    Get PDF
    Multiplex families with a high prevalence of a psychiatric disorder are often examined to identify rare genetic variants with large effect sizes. In the present study, we analysed whether the risk for bipolar disorder (BD) in BD multiplex families is influenced by common genetic variants. Furthermore, we investigated whether this risk is conferred mainly by BD-specific risk variants or by variants also associated with the susceptibility to schizophrenia or major depression. In total, 395 individuals from 33 Andalusian BD multiplex families (166 BD, 78 major depressive disorder, 151 unaffected) as well as 438 subjects from an independent, BD case/control cohort (161 unrelated BD, 277 unrelated controls) were analysed. Polygenic risk scores (PRS) for BD, schizophrenia (SCZ), and major depression were calculated and compared between the cohorts. Both the familial BD cases and unaffected family members had higher PRS for all three psychiatric disorders than the independent controls, with BD and SCZ being significant after correction for multiple testing, suggesting a high baseline risk for several psychiatric disorders in the families. Moreover, familial BD cases showed significantly higher BD PRS than unaffected family members and unrelated BD cases. A plausible hypothesis is that, in multiplex families with a general increase in risk for psychiatric disease, BD development is attributable to a high burden of common variants that confer a specific risk for BD. The present analyses demonstrated that common genetic risk variants for psychiatric disorders are likely to contribute to the high incidence of affective psychiatric disorders in the multiplex families. However, the PRS explained only part of the observed phenotypic variance, and rare variants might have also contributed to disease development

    Sex-Dependent Shared and Non-Shared Genetic Architecture Across Mood and Psychotic Disorders

    Get PDF
    BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. / METHODS: We conducted the largest to date genome-wide genotype–by–sex (GxS) interaction of risk for these disorders, using 85,735 cases (33,403 SCZ, 19,924 BIP, 32,408 MDD) and 109,946 controls from the Psychiatric Genomics Consortium (PGC) and iPSYCH. / RESULTS: Across disorders, genome-wide significant SNP-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815; p=3.2×10−8), that interacts with sodium/potassium-transporting ATPase enzymes implicating neuronal excitability. Three additional loci showed evidence (p<1×10−6) for cross-disorder GxS interaction (rs7302529, p=1.6×10−7; rs73033497, p=8.8×10−7; rs7914279, p=6.4×10−7) implicating various functions. Gene-based analyses identified GxS interaction across disorders (p=8.97×10−7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282; p=1.5×10−7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509; p=1.1×10−7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant GxS of genes regulating vascular endothelial growth factor (VEGF) receptor signaling in MDD (pFDR<0.05). / CONCLUSIONS: In the largest genome-wide GxS analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development, immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway enrichment levels

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    BACKGROUND: Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. METHODS: We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. RESULTS: Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. CONCLUSIONS: Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders

    Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders.

    No full text
    Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10 &lt;sup&gt;-8&lt;/sup&gt; ), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p &lt; 1 × 10 &lt;sup&gt;-6&lt;/sup&gt; ) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10 &lt;sup&gt;-7&lt;/sup&gt; ; rs73033497, p = 8.8 × 10 &lt;sup&gt;-7&lt;/sup&gt; ; rs7914279, p = 6.4 × 10 &lt;sup&gt;-7&lt;/sup&gt; ), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10 &lt;sup&gt;-7&lt;/sup&gt; ) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10 &lt;sup&gt;-7&lt;/sup&gt; ), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10 &lt;sup&gt;-7&lt;/sup&gt; ) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p &lt; .05). In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels

    GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors

    No full text
    OBJECTIVE: Suicidal behavior is heritable and is a major cause of death worldwide. Two large-scale genome-wide association studies (GWASs) recently discovered and cross-validated genome-wide significant (GWS) loci for suicide attempt (SA). The present study leveraged the genetic cohorts from both studies to conduct the largest GWAS meta-analysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures. METHODS: This study comprised 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed-effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian randomization with brain expression quantitative trait loci data, phenome-wide genetic correlation, and genetic causal proportion analyses. RESULTS: Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p values <5×10-8. These loci were mostly intergenic and implicated DRD2, SLC6A9, FURIN, NLGN1, SOX5, PDE4B, and CACNG2. The multi-ancestry SNP-based heritability estimate of SA was 5.7% on the liability scale (SE=0.003, p=5.7×10-80). Significant brain tissue gene expression and drug set enrichment were observed. There was shared genetic variation of SA with attention deficit hyperactivity disorder, smoking, and risk tolerance after conditioning SA on both major depressive disorder and posttraumatic stress disorder. Genetic causal proportion analyses implicated shared genetic risk for specific health factors. CONCLUSIONS: This multi-ancestry analysis of suicide attempt identified several loci contributing to risk and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across ancestry admixture populations, in veteran and civilian populations, and in attempt versus death
    corecore