2 research outputs found

    Genetic Comparison of a Croatian Isolate and CEPH European Founders

    Get PDF
    Human isolates have been postulated as a good resource for the identification of QTL due to reduced genetic diversity and a more homogeneous environment. Isolates may also have increased linkage disequilibrium (LD) due to small effective population size and, either loss or increase in frequency of alleles that are rare in the general population from which they originate. Here we investigate the difference in allele and genotype frequencies, LD and homozygous tracts between an isolate—several villages from the island of Vis in Croatia—and an outbred population of European origin: the Hapmap CEPH founders. Using the HumanHap300 v1 Genotyping BeadChip, we show that our population does not differ greatly from the reference CEU outbred population despite having a slightly higher proportion of monomorphic loci, a slightly higher long-range LD, and a greater proportion of individuals with long homozygous tracts. We conclude that genotyping arrays should perform equally well in our isolate as in outbred European populations for disease mapping studies and that SNP–trait associations discovered in our well-characterized Croatian isolate should be valid in the general European population from which they descend. Genet. Epidemiol. 34: 140–145, 2010. © 2009 Wiley-Liss, Inc

    Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls

    No full text
    There is increasing evidence that genome-wide association ( GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study ( using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined similar to 2,000 individuals for each of 7 major diseases and a shared set of similar to 3,000 controls. Case-control comparisons identified 24 independent association signals at P < 5 X 10(-7): 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn's disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a large number of further signals ( including 58 loci with single-point P values between 10(-5) and 5 X 10(-7)) likely to yield additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology of these important disorders. We anticipate that our data, results and software, which will be widely available to other investigators, will provide a powerful resource for human genetics research
    corecore