10 research outputs found

    Large-time dynamics of discrete-time neural networks with McCulloch-Pitts nonlinearity

    No full text
    We consider a discrete-time network system of two neurons with McCulloch-Pitts nonlinearity. We show that if a parameter is sufficiently small, then network system has a stable periodic solution with minimal period 4k, and if the parameter is large enough, then the solutions of system converge to single equilibrium

    Enabling Deep-Neural-Network-Integrated Optical and SAR Data to Estimate the Maize Leaf Area Index and Biomass with Limited In Situ Data

    No full text
    Accurate estimation of the maize leaf area index (LAI) and biomass is of great importance in guiding field management and early yield estimation. Physical models and traditional machine learning methods are commonly used for LAI and biomass estimation. However, these models and methods mostly rely on handcrafted features and theoretical formulas under idealized assumptions, which limits their accuracy. Deep neural networks have demonstrated great superiority in automatic feature extraction and complicated nonlinear approximation, but their application to LAI and biomass estimation has been hindered by the shortage of in situ data. Therefore, bridging the gap of data shortage and making it possible to leverage deep neural networks to estimate maize LAI and biomass is of great significance. Optical data cannot provide information in the lower canopy due to the limited penetrability, but synthetic aperture radar (SAR) data can do this, so the integration of optical and SAR data is necessary. In this paper, 158 samples from the jointing, trumpet, flowering, and filling stages of maize were collected for investigation. First, we propose an improved version of the mixup training method, which is termed mixup+, to augment the sample amount. We then constructed a novel gated Siamese deep neural network (GSDNN) based on a gating mechanism and a Siamese architecture to integrate optical and SAR data for the estimation of the LAI and biomass. We compared the accuracy of the GSDNN with those of other machine learning methods, i.e., multiple linear regression (MLR), support vector regression (SVR), random forest regression (RFR), and a multilayer perceptron (MLP). The experimental results show that without the use of mixup+, the GSDNN achieved a similar accuracy to that of the simple neural network MLP in terms of R2 and RMSE, and this was slightly lower than those of MLR, SVR, and RFR. However, with the help of mixup+, the GSDNN achieved state-of-the-art performance (R2 = 0.71, 0.78, and 0.86 and RMSE = 0.58, 871.83, and 150.76 g/m2, for LAI, Biomass_wet, and Biomass_dry, respectively), exceeding the accuracies of MLR, SVR, RFR, and MLP. In addition, through the integration of optical and SAR data, the GSDNN achieved better accuracy in LAI and biomass estimation than when optical or SAR data alone were used. We found that the most appropriate amount of synthetic data from mixup+ was five times the amount of original data. Overall, this study demonstrates that the GSDNN + mixup+ has great potential for the integration of optical and SAR data with the aim of improving the estimation accuracy of the maize LAI and biomass with limited in situ data

    A Random Forest Algorithm for Retrieving Canopy Chlorophyll Content of Wheat and Soybean Trained with PROSAIL Simulations Using Adjusted Average Leaf Angle

    No full text
    Canopy chlorophyll content (CCC) is an important indicator for crop-growth monitoring and crop productivity estimation. The hybrid method, involving the PROSAIL radiative transfer model and machine learning algorithms, has been widely applied for crop CCC retrieval. However, PROSAIL’s homogeneous canopy hypothesis limits the ability to use the PROSAIL-based CCC estimation across different crops with a row structure. In addition to leaf area index (LAI), average leaf angle (ALA) is the most important canopy structure factor in the PROSAIL model. Under the same LAI, adjustment of the ALA can make a PROSAIL simulation obtain the same canopy gap as the heterogeneous canopy at a specific observation angle. Therefore, parameterization of an adjusted ALA (ALAadj) is an optimal choice to make the PROSAIL model suitable for specific row-planted crops. This paper attempted to improve PROSAIL-based CCC retrieval for different crops, using a random forest algorithm, by introducing the prior knowledge of crop-specific ALAadj. Based on the field reflectance spectrum at nadir, leaf area index, and leaf chlorophyll content, parameterization of the ALAadj in the PROSAIL model for wheat and soybean was carried out. An algorithm integrating the random forest and PROSAIL simulations with prior ALAadj information was developed for wheat and soybean CCC retrieval. Ground-measured CCC measurements were used to validate the CCC retrieved from canopy spectra. The results showed that the ALAadj values (62 degrees for wheat; 45 degrees for soybean) that were parameterized for the PROSAIL model demonstrated good discrimination between the two crops. The proposed algorithm improved the CCC retrieval accuracy for wheat and soybean, regardless of whether continuous visible to near-infrared spectra with 50 bands (RMSE from 39.9 to 32.9 μg cm−2; R2 from 0.67 to 0.76) or discrete spectra with 13 bands (RMSE from 43.9 to 33.7 μg cm−2; R2 from 0.63 to 0.74) and nine bands (RMSE from 45.1 to 37.0 μg cm−2; R2 from 0.61 to 0.71) were used. The proposed hybrid algorithm, based on PROSAIL simulations with ALAadj, has the potential for satellite-based CCC estimation across different crop types, and it also has a good reference value for the retrieval of other crop parameters

    Evaluation of Hybrid Models for Maize Chlorophyll Retrieval Using Medium- and High-Spatial-Resolution Satellite Images

    No full text
    Accurate estimation of the leaf or canopy chlorophyll content is crucial for monitoring crop growth conditions. Remote sensing monitoring of crop chlorophyll is a non-destructive, large-area, and real-time method that requires reliable retrieval models and satellite data. High-resolution satellite imagery generally has better object recognition capabilities. However, the influence of the spectral and spatial resolution of medium- and high-spatial-resolution satellite imagery on chlorophyll retrieval is currently unexplored, especially in conjunction with radiative transfer models (RTMs). This has important implications for the accurate quantification of crop chlorophyll over large areas. Therefore, the objectives of this study were to establish an RTM for the retrieval of maize chlorophyll and to compare the chlorophyll retrieval capability of the model using medium- and high-spatial-resolution satellite images. We constructed a hybrid model consisting of the PROSAIL model and the Gaussian process regression (GPR) algorithm to retrieve maize leaf and canopy chlorophyll contents (LCC and CCC). In addition, an active learning (AL) strategy was incorporated into the hybrid model to enhance the model’s accuracy and efficiency. Sentinel-2 imagery with a spatial resolution of 10 m and 3 m-resolution Planet imagery were utilized for the LCC and CCC retrieval, respectively, using the hybrid model. The accuracy of the model was verified using field-measured maize chlorophyll data obtained in Dajianchang Town, Wuqing District, Tianjin City, in 2018. The results showed that the AL strategy increased the accuracy of the chlorophyll retrieval. The hybrid model for LCC retrieval with 10-band Sentinel-2 without AL had an R2 of 0.567 and an RMSE of 5.598, and the model with AL had an R2 of 0.743 and an RMSE of 3.964. Incorporating the AL strategy improved the model performance (R2 = 0.743 and RMSE = 3.964). The Planet imagery provided better results for chlorophyll retrieval than 4-band Sentinel-2 imagery but worse performance than 10-band Sentinel-2 imagery. Additionally, we tested the model using maize chlorophyll data obtained from Youyi Farm in Heilongjiang Province in 2021 to evaluate the model’s robustness and scalability. The test results showed that the hybrid model used with 10-band Sentinel-2 images achieved good accuracy in the Youyi Farm area (LCC: R2 = 0.792, RMSE = 2.8; CCC: R2 = 0.726, RMSE = 0.152). The optimal hybrid model was applied to images from distinct periods to map the spatiotemporal distribution of the chlorophyll content. The uncertainties in the chlorophyll content retrieval results from different periods were relatively low, demonstrating that the model had good temporal scalability. Our research results can provide support for the precise management of maize growth

    A Random Forest Algorithm for Retrieving Canopy Chlorophyll Content of Wheat and Soybean Trained with PROSAIL Simulations Using Adjusted Average Leaf Angle

    No full text
    Canopy chlorophyll content (CCC) is an important indicator for crop-growth monitoring and crop productivity estimation. The hybrid method, involving the PROSAIL radiative transfer model and machine learning algorithms, has been widely applied for crop CCC retrieval. However, PROSAIL’s homogeneous canopy hypothesis limits the ability to use the PROSAIL-based CCC estimation across different crops with a row structure. In addition to leaf area index (LAI), average leaf angle (ALA) is the most important canopy structure factor in the PROSAIL model. Under the same LAI, adjustment of the ALA can make a PROSAIL simulation obtain the same canopy gap as the heterogeneous canopy at a specific observation angle. Therefore, parameterization of an adjusted ALA (ALAadj) is an optimal choice to make the PROSAIL model suitable for specific row-planted crops. This paper attempted to improve PROSAIL-based CCC retrieval for different crops, using a random forest algorithm, by introducing the prior knowledge of crop-specific ALAadj. Based on the field reflectance spectrum at nadir, leaf area index, and leaf chlorophyll content, parameterization of the ALAadj in the PROSAIL model for wheat and soybean was carried out. An algorithm integrating the random forest and PROSAIL simulations with prior ALAadj information was developed for wheat and soybean CCC retrieval. Ground-measured CCC measurements were used to validate the CCC retrieved from canopy spectra. The results showed that the ALAadj values (62 degrees for wheat; 45 degrees for soybean) that were parameterized for the PROSAIL model demonstrated good discrimination between the two crops. The proposed algorithm improved the CCC retrieval accuracy for wheat and soybean, regardless of whether continuous visible to near-infrared spectra with 50 bands (RMSE from 39.9 to 32.9 μg cm−2; R2 from 0.67 to 0.76) or discrete spectra with 13 bands (RMSE from 43.9 to 33.7 μg cm−2; R2 from 0.63 to 0.74) and nine bands (RMSE from 45.1 to 37.0 μg cm−2; R2 from 0.61 to 0.71) were used. The proposed hybrid algorithm, based on PROSAIL simulations with ALAadj, has the potential for satellite-based CCC estimation across different crop types, and it also has a good reference value for the retrieval of other crop parameters

    A new spectral index for the quantitative identification of yellow rust using fungal spore information

    No full text
    Yellow rust (Puccinia striiformis f. sp. Tritici) is a frequently occurring fungal disease of winter wheat (Triticum aestivum L.). During yellow rust infestation, fungal spores appear on the surface of the leaves as yellow and narrow stripes parallel to the leaf veins. We analyzed the effect of the fungal spores on the spectra of the diseased leaves to find a band sensitive to yellow rust and established a new vegetation index called the yellow rust spore index (YRSI). The estimation accuracy and stability were evaluated using two years of leaf spectral data, and the results were compared with eight indices commonly used for yellow rust detection. The results showed that the use of the YRSI ranked first for estimating the disease ratio for the 2017 spectral data (R2 = 0.710, RMSE = 0.097) and outperformed the published indices (R2 = 0.587, RMSE = 0.120) for the validation using the 2002 spectral data. The random forest (RF), k-nearest neighbor (KNN), and support vector machine (SVM) algorithms were used to test the discrimination ability of the YRSI and the eight commonly used indices using a mixed dataset of yellow-rust-infested, healthy, and aphid–infested wheat spectral data. The YRSI provided the best performance

    Assessment on Potential Suitable Habitats of the Grasshopper Oedaleus decorus asiaticus in North China based on MaxEnt Modeling and Remote Sensing Data

    No full text
    Grasshopper populations can quickly grow to catastrophic levels, causing a huge amount of damage in a short time. Oedaleus decorus asiaticus (Bey-Bienko) (O. d. asiaticus) is the most serious species in Xilingol League of the Inner Mongolia Autonomous Region. The region is not only an important grassland but also a site of agricultural heritage systems in China. Therefore, projecting the potential geographic distribution of O. d. asiaticus to provide an early warning is vital. Here, we combined temperature, precipitation, soil, vegetation, and topography with remote sensing data to screen the predictors that best characterize the current geographical distribution of O. d. asiaticus. A MaxEnt model approach was applied to project the potential suitable distribution of O. d. asiaticus in Xilingol League (the Inner Mongolia Autonomous Region of China) combined with a set of optimized parameters. The modeling results indicated that there were six main habitat factors that determined the suitable distribution of O. d. asiaticus such as the soil type (ST), grassland type (GT), elevation, precipitation during the growing period (GP), precipitation during the spawning period (SP), and normalized difference vegetation index during the overwintering period (ONDVI). The simulated result was good, with average AUC and TSS values of 0.875 and 0.812, respectively. The potential inhabitable areas of grasshoppers were 198,527 km2, distributed mainly in West Urumqi, Xilinhot City, East Urumqi, Abaga Banner, and Xianghuang Banner of Xilingol League. This study is valuable to guide managers and decision-makers to prevent and control the occurrence of O. d. asiaticus early on and this study may facilitate meaningful reductions in pesticide application

    Assessment on Potential Suitable Habitats of the Grasshopper <i>Oedaleus decorus asiaticus</i> in North China based on MaxEnt Modeling and Remote Sensing Data

    No full text
    Grasshopper populations can quickly grow to catastrophic levels, causing a huge amount of damage in a short time. Oedaleus decorus asiaticus (Bey-Bienko) (O. d. asiaticus) is the most serious species in Xilingol League of the Inner Mongolia Autonomous Region. The region is not only an important grassland but also a site of agricultural heritage systems in China. Therefore, projecting the potential geographic distribution of O. d. asiaticus to provide an early warning is vital. Here, we combined temperature, precipitation, soil, vegetation, and topography with remote sensing data to screen the predictors that best characterize the current geographical distribution of O. d. asiaticus. A MaxEnt model approach was applied to project the potential suitable distribution of O. d. asiaticus in Xilingol League (the Inner Mongolia Autonomous Region of China) combined with a set of optimized parameters. The modeling results indicated that there were six main habitat factors that determined the suitable distribution of O. d. asiaticus such as the soil type (ST), grassland type (GT), elevation, precipitation during the growing period (GP), precipitation during the spawning period (SP), and normalized difference vegetation index during the overwintering period (ONDVI). The simulated result was good, with average AUC and TSS values of 0.875 and 0.812, respectively. The potential inhabitable areas of grasshoppers were 198,527 km2, distributed mainly in West Urumqi, Xilinhot City, East Urumqi, Abaga Banner, and Xianghuang Banner of Xilingol League. This study is valuable to guide managers and decision-makers to prevent and control the occurrence of O. d. asiaticus early on and this study may facilitate meaningful reductions in pesticide application
    corecore