39 research outputs found

    Review of Speculative "Disaster Scenarios" at RHIC

    Get PDF
    We discuss speculative disaster scenarios inspired by hypothetical new fundamental processes that might occur in high energy relativistic heavy ion collisions. We estimate the parameters relevant to black hole production; we find that they are absurdly small. We show that other accelerator and (especially) cosmic ray environments have already provided far more auspicious opportunities for transition to a new vacuum state, so that existing observations provide stringent bounds. We discuss in most detail the possibility of producing a dangerous strangelet. We argue that four separate requirements are necessary for this to occur: existence of large stable strangelets, metastability of intermediate size strangelets, negative charge for strangelets along the stability line, and production of intermediate size strangelets in the heavy ion environment. We discuss both theoretical and experimental reasons why each of these appears unlikely; in particular, we know of no plausible suggestion for why the third or especially the fourth might be true. Given minimal physical assumptions the continued existence of the Moon, in the form we know it, despite billions of years of cosmic ray exposure, provides powerful empirical evidence against the possibility of dangerous strangelet production.Comment: 28 pages, REVTeX; minor revisions for publication (Reviews of Modern Physics, ca. Oct. 2000); email to [email protected]

    Energy and Flux Measurements of Ultra-High Energy Cosmic Rays Observed During the First ANITA Flight

    Get PDF
    The first flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment recorded 16 radio signals that were emitted by cosmic-ray induced air showers. For 14 of these events, this radiation was reflected from the ice. The dominant contribution to the radiation from the deflection of positrons and electrons in the geomagnetic field, which is beamed in the direction of motion of the air shower. This radiation is reflected from the ice and subsequently detected by the ANITA experiment at a flight altitude of 36km. In this paper, we estimate the energy of the 14 individual events and find that the mean energy of the cosmic-ray sample is 2.9 EeV. By simulating the ANITA flight, we calculate its exposure for ultra-high energy cosmic rays. We estimate for the first time the cosmic-ray flux derived only from radio observations. In addition, we find that the Monte Carlo simulation of the ANITA data set is in agreement with the total number of observed events and with the properties of those events.Comment: Added more explanation of the experimental setup and textual improvement

    Origin and evolution of the light nuclides

    Get PDF
    After a short historical (and highly subjective) introduction to the field, I discuss our current understanding of the origin and evolution of the light nuclides D, He-3, He-4, Li-6, Li-7, Be-9, B-10 and B-11. Despite considerable observational and theoretical progress, important uncertainties still persist for each and every one of those nuclides. The present-day abundance of D in the local interstellar medium is currently uncertain, making it difficult to infer the recent chemical evolution of the solar neighborhood. To account for the observed quasi-constancy of He-3 abundance from the Big Bang to our days, the stellar production of that nuclide must be negligible; however, the scarce observations of its abundance in planetary nebulae seem to contradict this idea. The observed Be and B evolution as primaries suggests that the source composition of cosmic rays has remained quasi-constant since the early days of the Galaxy, a suggestion with far reaching implications for the origin of cosmic rays; however, the main idea proposed to account for that constancy, namely that superbubbles are at the source of cosmic rays, encounters some serious difficulties. The best explanation for the mismatch between primordial Li and the observed "Spite-plateau" in halo stars appears to be depletion of Li in stellar envelopes, by some yet poorly understood mechanism. But this explanation impacts on the level of the recently discovered early ``Li-6 plateau'', which (if confirmed), seriously challenges current ideas of cosmic ray nucleosynthesis.Comment: 18 pages, 9 figs. Invited Review in "Symposium on the Composition of Matter", honoring Johannes Geiss on the occasion of his 80th birthday (Grindelwald, Switzerland, Sept. 2006), to be published in Space Science Series of ISS

    The Antarctic Impulsive Transient Antenna Ultra-high Energy Neutrino Detector Design, Performance, and Sensitivity for 2006-2007 Balloon Flight

    Full text link
    We present a detailed report on the experimental details of the Antarctic Impulsive Transient Antenna (ANITA) long duration balloon payload, including the design philosophy and realization, physics simulations, performance of the instrument during its first Antarctic flight completed in January of 2007, and expectations for the limiting neutrino detection sensitivity. Neutrino physics results will be reported separately.Comment: 50 pages, 49 figures, in preparation for PR

    The CALorimetric Electron Telescope (CALET) for high-energy astroparticle physics on the International Space Station

    Get PDF
    The CALorimetric Electron Telescope (CALET) is a space experiment, currently under development by Japan in collaboration with Italy and the United States, which will measure the flux of cosmic-ray electrons (and positrons) up to 20 TeV energy, of gamma rays up to 10 TeV, of nuclei with Z from 1 to 40 up to 1 PeV energy, and will detect gamma-ray bursts in the 7 keV to 20 MeV energy range during a 5 year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of CALET, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths) with tungsten plates interleaving scintillating fibre planes, and a thick energy measuring calorimeter (27 radiation lengths) composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch (expected in 2015) to the International Space Station ISS, for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF)
    corecore