58 research outputs found

    Atypical audiovisual speech integration in infants at risk for autism

    Get PDF
    The language difficulties often seen in individuals with autism might stem from an inability to integrate audiovisual information, a skill important for language development. We investigated whether 9-month-old siblings of older children with autism, who are at an increased risk of developing autism, are able to integrate audiovisual speech cues. We used an eye-tracker to record where infants looked when shown a screen displaying two faces of the same model, where one face is articulating/ba/and the other/ga/, with one face congruent with the syllable sound being presented simultaneously, the other face incongruent. This method was successful in showing that infants at low risk can integrate audiovisual speech: they looked for the same amount of time at the mouths in both the fusible visual/ga/− audio/ba/and the congruent visual/ba/− audio/ba/displays, indicating that the auditory and visual streams fuse into a McGurk-type of syllabic percept in the incongruent condition. It also showed that low-risk infants could perceive a mismatch between auditory and visual cues: they looked longer at the mouth in the mismatched, non-fusible visual/ba/− audio/ga/display compared with the congruent visual/ga/− audio/ga/display, demonstrating that they perceive an uncommon, and therefore interesting, speech-like percept when looking at the incongruent mouth (repeated ANOVA: displays x fusion/mismatch conditions interaction: F(1,16) = 17.153, p = 0.001). The looking behaviour of high-risk infants did not differ according to the type of display, suggesting difficulties in matching auditory and visual information (repeated ANOVA, displays x conditions interaction: F(1,25) = 0.09, p = 0.767), in contrast to low-risk infants (repeated ANOVA: displays x conditions x low/high-risk groups interaction: F(1,41) = 4.466, p = 0.041). In some cases this reduced ability might lead to the poor communication skills characteristic of autism

    Effects of G/A polymorphism, rs266882, in the androgen response element 1 of the PSA gene on prostate cancer risk, survival and circulating PSA levels

    Get PDF
    Prostate-specific antigen (PSA) is a protease produced in the prostate that cleaves insulin-like growth factor binding protein-3 and other proteins. Production is mediated by the androgen receptor (AR) binding to the androgen response elements (ARE) in the promoter region of the PSA gene. Studies of a single nucleotide polymorphism (PSA −158 G/A, rs266882) in ARE1 of the PSA gene have been conflicting for risk of prostate cancer and effect on plasma PSA levels. In this nested case–control analysis of 500 white cases and 676 age- and smoking-matched white controls in the Physicians' Health Study we evaluated the association of rs266882 with risk and survival of prostate cancer and prediagnostic total and free PSA plasma levels, alone or in combination with AR CAG repeats. We used conditional logistic regression, linear regression and Cox regression, and found no significant associations between rs266882 (GG allele vs AA allele) and overall prostate cancer risk (RR=1.21, 95% confidence intervals (CI): 0.88–1.67) or prostate cancer-specific survival (RR=0.94, 95%CI: 0.56–1.58). Similarly, no associations were found among high grade or advanced stage tumours, or by calendar year of diagnosis. There was no significant association between rs266882 and baseline total or free PSA levels or the AR CAG repeats, nor any interaction associated with prostate cancer risk. Meta-analysis of 12 studies of rs266882 and overall prostate cancer risk was null

    Kynurenine–3–monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis

    Get PDF
    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death1,2 Acute mortality from AP-MODS exceeds 20%3 and for those who survive the initial episode, their lifespan is typically shorter than the general population4. There are no specific therapies available that protect individuals against AP-MODS. Here, we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism5, is central to the pathogenesis of AP-MODS. We created a mouse strain deficient for Kmo with a robust biochemical phenotype that protected against extrapancreatic tissue injury to lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in levels of kynurenine pathway metabolites in vivo and afforded therapeutic protection against AP-MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS and open up a new area for drug discovery in critical illness

    Natural environments, ancestral diets, and microbial ecology: is there a modern “paleo-deficit disorder”? Part II

    Get PDF
    • 

    corecore