1,646 research outputs found
Bubbles as tracers of heat input to cooling flows
We examine the distribution of injected energy in three-dimensional,
adaptive-grid simulations of the heating of cooling flows. We show that less
than 10 percent of the injected energy goes into bubbles. Consequently, the
energy input from the nucleus is underestimated by a factor of order 6 when it
is taken to be given by PVgamma/(gamma-1), where P and V are the pressure and
volume of the bubble, and gamma the ratio of principal specific heats.Comment: Accepted for publication in MNRAS; 5 page
Getting the astrophysics and particle physics of dark matter out of next-generation direct detection experiments
The next decade will bring massive new data sets from experiments of the
direct detection of weakly interacting massive particle (WIMP) dark matter. The
primary goal of these experiments is to identify and characterize the
dark-matter particle species. However, mapping the data sets to the
particle-physics properties of dark matter is complicated not only by the
considerable uncertainties in the dark-matter model, but by its poorly
constrained local distribution function (the "astrophysics" of dark matter). In
this Letter, I propose a shift in how to do direct-detection data analysis. I
show that by treating the astrophysical and particle physics uncertainties of
dark matter on equal footing, and by incorporating a combination of data sets
into the analysis, one may recover both the particle physics and astrophysics
of dark matter. Not only does such an approach yield more accurate estimates of
dark-matter properties, but may illuminate how dark matter coevolves with
galaxies.Comment: 4 pages, 4 figures, replaced to match version accepted by Phys. Rev.
Evidence of a Metal Rich Galactic Bar from the Vertex Deviation of the Velocity Ellipsoid
We combine radial velocities, proper motions, and low resolution abundances
for a sample of 315 K and M giants in the Baade's Window (l,b)=(0.9,-4)
Galactic bulge field. The velocity ellipsoid of stars with [Fe/H]>-0.5 dex
shows a vertex deviation in the plot of radial versus transverse velocity,
consistent with that expected from a population with orbits supporting a bar.
We demonstrate that the significance of this vertex deviation using
non-parametric rank correlation statistic is >99%. The velocity ellipsoid for
the metal poor ([FeH]<-0.5) part of the population shows no vertex deviation
and is consistent with an isotropic, oblate rotating population. We find no
evidence for kinematic subgroups, but there is a mild tendency for the vertical
velocity dispersion sigma_b to decrease with increasing metallicity.Comment: 4 pages, ApJ Letters, submitte
On the kinematic signature of a central Galactic bar in observed star samples
A quasi self-consistent model for a barred structure in the central regions
of our Galaxy is used to calculate the signature of such a triaxial structure
on the kinematical properties of star samples. We argue that, due to the
presence of a velocity dispersion, such effects are much harder to detect in
the stellar component than in the gas. It might be almost impossible to detect
stellar kinematical evidence for a bar using only l-v diagrams, if there is no
a priori knowledge of the potential. Therefore, we propose some test parameters
that can easily be applied to observed star samples, and that also incorporate
distances or proper motions. We discus the diagnostic power of these tests as a
function of the sample size and the bar strength. We conclude that about 1000
stars would be necessary to diagnose triaxiality with some statistical
confidence.Comment: 9 pages + 8 PS figures, uses aas2pp4.sty. Accepted by Ap
The Ellipticity of the Disks of Spiral Galaxies
The disks of spiral galaxies are generally elliptical rather than circular.
The distribution of ellipticities can be fit with a log-normal distribution.
For a sample of 12,764 galaxies from the Sloan Digital Sky Survey Data Release
1 (SDSS DR1), the distribution of apparent axis ratios in the i band is best
fit by a log-normal distribution of intrinsic ellipticities with ln epsilon =
-1.85 +/- 0.89. For a sample of nearly face-on spiral galaxies, analyzed by
Andersen and Bershady using both photometric and spectroscopic data, the best
fitting distribution of ellipticities has ln epsilon = -2.29 +/- 1.04. Given
the small size of the Andersen-Bershady sample, the two distribution are not
necessarily inconsistent. If the ellipticity of the potential were equal to
that of the light distribution of the SDSS DR1 galaxies, it would produce 1.0
magnitudes of scatter in the Tully-Fisher relation, greater than is observed.
The Andersen-Bershady results, however, are consistent with a scatter as small
as 0.25 magnitudes in the Tully-Fisher relation.Comment: 19 pages, 5 figures; ApJ, accepte
Probing a regular orbit with spectral dynamics
We have extended the spectral dynamics formalism introduced by Binney &
Spergel, and have implemented a semi-analytic method to represent regular
orbits in any potential, making full use of their regularity. We use the
spectral analysis code of Carpintero & Aguilar to determine the nature of an
orbit (irregular, regular, resonant, periodic) from a short-time numerical
integration. If the orbit is regular, we approximate it by a truncated Fourier
time series of a few tens of terms per coordinate. Switching to a description
in action-angle variables, this corresponds to a reconstruction of the
underlying invariant torus. We then relate the uniform distribution of a
regular orbit on its torus to the non-uniform distribution in the space of
observables by a simple Jacobian transformation between the two sets of
coordinates. This allows us to compute, in a cell-independent way, all the
physical quantities needed in the study of the orbit, including the density and
in the line-of-sight velocity distribution, with much increased accuracy. The
resulting flexibility in the determination of the orbital properties, and the
drastic reduction of storage space for the orbit library, provide a significant
improvement in the practical application of Schwarzschild's orbit superposition
method for constructing galaxy models. We test and apply our method to
two-dimensional orbits in elongated discs, and to the meridional motion in
axisymmetric potentials, and show that for a given accuracy, the spectral
dynamics formalism requires an order of magnitude fewer computations than the
more traditional approaches.Comment: 13 pages, 18 eps figures, submitted to MNRA
The CMB Dipole and Circular Galaxy Distribution
The validity of Hubble's law defies the determination of the center of the
big bang expansion, even if it exists. Every point in the expanding universe
looks like the center from which the rest of the universe flies away. In this
article, the author shows that the distribution of apparently circular galaxies
is not uniform in the sky and that there exists a special direction in the
universe in our neighborhood. The data is consistent with the assumption that
the tidal force due to the mass distribution around the universe center causes
the deformation of galactic shapes depending on its orientation and location
relative to the center and our galaxy. Moreover, the cmb dipole data can also
be associated with the center of the universe expansion, if the cmb dipole at
the center of our supercluster is assumed to be due to Hubble flow. The
location of the center is estimated from the cmb dipole data. The direction to
the center from both sets of data is consistent and the distance to the center
is computed from the cmb dipole data.Comment: 9 pages, 3 figures (10 figure captions), 1 tabl
Shape, spin and baryon fraction of clusters in the MareNostrum Universe
The MareNostrum Universe is one of the largest cosmological
SPH simulation done so far. It consists of dark and
gas particles in a box of 500 Mpc on a side. Here we study
the shapes and spins of the dark matter and gas components of the 10,000 most
massive objects extracted from the simulation as well as the gas fraction in
those objects. We find that the shapes of objects tend to be prolate both in
the dark matter and gas. There is a clear dependence of shape on halo mass, the
more massive ones being less spherical than the less massive objects. The gas
distribution is nevertheless much more spherical than the dark matter, although
the triaxiality parameters of gas and dark matter differ only by a few percent
and it increases with cluster mass. The spin parameters of gas and dark matter
can be well fitted by a lognormal distribution function. On average, the spin
of gas is 1.4 larger than the spin of dark matter. We find a similar behavior
for the spins at higher redshifts, with a slightly decrease of the spin ratios
to 1.16 at The cosmic normalized baryon fraction in the entire cluster
sample ranges from , at to at . At both
redshifts we find a slightly, but statistically significant decrease of
with cluster mass.Comment: 7 pages, 6 figures. Accepted for publication in The Astrophysical
Journa
The proper motion of the Arches cluster with Keck Laser-Guide Star Adaptive Optics
We present the first measurement of the proper motion of the young, compact
Arches cluster near the Galactic center from near-infrared adaptive optics (AO)
data taken with the recently commissioned laser-guide star (LGS) at the Keck
10-m telescope. The excellent astrometric accuracy achieved with LGS-AO
provides the basis for a detailed comparison with VLT/NAOS-CONICA data taken
4.3 years earlier. Over the 4.3 year baseline, a spatial displacement of the
Arches cluster with respect to the field population is measured to be 24.0 +/-
2.2 mas, corresponding to a proper motion of 5.6 +/- 0.5 mas/yr or 212 +/- 29
km/s at a distance of 8 kpc. In combination with the known line-of-sight
velocity of the cluster, we derive a 3D space motion of 232 +/- 30 km/s of the
Arches relative to the field. The large proper motion of the Arches cannot be
explained with any of the closed orbital families observed in gas clouds in the
bar potential of the inner Galaxy, but would be consistent with the Arches
being on a transitional trajectory from x1 to x2 orbits. We investigate a
cloud-cloud collision as the possible origin for the Arches cluster. The
integration of the cluster orbit in the potential of the inner Galaxy suggests
that the cluster passes within 10 pc of the supermassive black hole only if its
true GC distance is very close to its projected distance. A contribution of
young stars from the Arches cluster to the young stellar population in the
inner few parsecs of the GC thus appears increasingly unlikely. The measurement
of the 3D velocity and orbital analysis provides the first observational
evidence that Arches-like clusters do not spiral into the GC. This confirms
that no progenitor clusters to the nuclear cluster are observed at the present
epoch.Comment: 22 pdflatex pages including 12 figures, reviewed version accepted by
Ap
The distribution of two-dimensional eccentricity of Sunyaev-Zeldovich Effect and X-ray surface brightness profiles
With the triaxial density profile of dark matter halos and the corresponding
equilibrium gas distribution, we derive two-dimensional Sunyaev-Zeldovich (SZ)
effect and X-ray surface brightness profiles for clusters of galaxies. It is
found that the contour map of these observables can be well approximated by a
series of concentric ellipses with scale-dependent eccentricities. The
statistical distribution of their eccentricities (or equivalently axial ratios)
is analyzed by taking into account the orientation of clusters with respect to
the line of sight and the distribution of the axial ratios and the
concentration parameters of dark matter halos. For clusters of mass
at redshift , the axial ratio is peaked at
for both SZ and X-ray profiles. For larger clusters, the
deviation from circular distributions is more apparent, with peaked at
for . To be more close to
observations, we further study the axial-ratio distribution for mass-limited
cluster samples with the number distribution of clusters at different redshifts
described by a modified Press-Schechter model. For a mass limit of value
, the average axial ratio is with a tail extended to . With fast advance of high
quality imaging observations of both SZ effect and X-ray emissions, our
analyses provide a useful way to probe cluster halo profiles and therefore to
test theoretical halo-formation models.Comment: 28 pages, 6 figures. Accepted for publication in the Astrophysical
Journa
- âŠ