11 research outputs found

    Targeting and inhibition of tumor-associated macrophages in breast cancer

    Get PDF
    Breast cancer is a disease which affects 1 in 7 women during their lifetime. With 464.000 new cases and 131.000 deaths, it is the most occurring cancer type and leading cause of cancer related deaths in women in Europe. As the overall age of the population is predicted to increase, these numbers will rise as well. Cytotoxic agents, hormone treatment, radiation and small molecule inhibitors are the current therapies used in the treatment of breast cancer. Although these therapies work well towards the primary tumor, they do not affect the surrounding stromal cells. Tumor growth and survival depend greatly on the support of the tumor micro-environment (TME), where stromal cells promote neo-angiogenesis, matrix remodeling and cause suppression of the adaptive immune system. Macrophages play a major role in these processes. Tumor-associated macrophages (TAM), present in the TME, have been shown to play a crucial role in tumor growth and progression. Therefore, effective treatment of TAM might prove to be a successful treatment strategy in breast cancer therapy. This thesis project aimed to develop a novel nanoparticle-based strategy to target TAM and inhibit their tumor growth promoting activities. A novel drug candidate (AS1517499) was identified for such inhibition, and incorporated into a newly designed nanoparticle delivery system, which was able to selectively deliver TAM-modulating drugs to TA

    Cancer immune therapy using engineered ‛tail-flipping’ nanoliposomes targeting alternatively activated macrophages

    Get PDF
    Alternatively-activated, M2-like tumor-associated macrophages (TAM) strongly contribute to tumor growth, invasiveness and metastasis. Technologies to disable the pro-tumorigenic function of these TAMs are of high interest to immunotherapy research. Here we show that by designing engineered nanoliposomes bio-mimicking peroxidated phospholipids that are recognised and internalised by scavenger receptors, TAMs can be targeted. Incorporation of phospholipids possessing a terminal carboxylate group at the sn-2 position into nanoliposome bilayers drives their uptake by M2 macrophages with high specificity. Molecular dynamics simulation of the lipid bilayer predicts flipping of the sn-2 tail towards the aqueous phase, while molecular docking data indicates interaction of the tail with Scavenger Receptor Class B type 1 (SR-B1). In vivo, the engineered nanoliposomes are distributed specifically to M2-like macrophages and, upon delivery of the STAT6 inhibitor (AS1517499), zoledronic acid or muramyl tripeptide, these cells promote reduction of the premetastatic niche and/or tumor growth. Altogether, we demonstrate the efficiency and versatility of our engineered “tail-flipping” nanoliposomes in a pre-clinical model, which paves the way to their development as cancer immunotherapeutics in humans

    Nanomedicine Strategies to Target Tumor-Associated Macrophages

    No full text
    In recent years, the influence of the tumor microenvironment (TME) on cancer progression has been better understood. Macrophages, one of the most important cell types in the TME, exist in different subtypes, each of which has a different function. While classically activated M1 macrophages are involved in inflammatory and malignant processes, activated M2 macrophages are more involved in the wound-healing processes occurring in tumors. Tumor-associated macrophages (TAM) display M2 macrophage characteristics and support tumor growth and metastasis by matrix remodeling, neo-angiogenesis, and suppressing local immunity. Due to their detrimental role in tumor growth and metastasis, selective targeting of TAM for the treatment of cancer may prove to be beneficial in the treatment of cancer. Due to the plastic nature of macrophages, their activities may be altered to inhibit tumor growth. In this review, we will discuss the therapeutic options for the modulation and targeting of TAM. Different therapeutic strategies to deplete, inhibit recruitment of, or re-educate TAM will be discussed. Current strategies for the targeting of TAM using nanomedicine are reviewed. Passive targeting using different nanoparticle systems is described. Since TAM display a number of upregulated surface proteins compared to non-TAM, specific targeting using targeting ligands coupled to nanoparticles is discussed in detail

    Targeting the Stat6 pathway in tumor-associated macrophages reduces tumor growth and metastatic niche formation in breast cancer

    No full text
    Tumor-associated macrophages (TAMs) are the key effector cells in the tumor microenvironment and induce neoangiogenesis, matrix remodeling, and metastasis while suppressing the tumor immune system. These protumoral macrophages display an M2 phenotype induced by IL-4 and IL-13 cytokines. In this study, we hypothesized that the inhibition of the signal transducer and activator of transcription 6 (Stat6) pathway, a common downstream signaling pathway of IL-4 and IL-13, may be an interesting strategy by which to inhibit TAM differentiation and, thus, their protumorigenic activities. In vitro inhibition of the Stat6 pathway by using small interfering RNA or the pharmacologic inhibitor, AS1517499, inhibited the differentiation of mouse RAW264.7 macrophages into the M2 phenotype, as demonstrated by the reduction of Arg-1 (arginase-1) and Mrc-1 (mannose receptor 1) expression and arginase activity. In vivo, AS1517499 significantly attenuated tumor growth and early liver metastasis in an orthotopic 4T1 mammary carcinoma mouse model. Furthermore, in another experiment, we observed an increase in the intrahepatic mRNA expression of F4/80 (EGF-like module-containing mucin-like hormone receptor-like 1; total macrophages) and M2 macrophage markers [Ym-1 (chitinase 3–like protein 3) and Mrc-1] and metastatic niche markers [Mmp-2 (matrix metalloproteinase-2), Postn (periostin), and Cd34] in mice with increasing growth of primary tumors. Of interest, these markers were found to be reduced after treatment with AS1517499. In summary, inhibition of the Stat6 pathway in TAMs is a vital therapeutic approach to attenuate tumor growth and metastasis by inhibiting TAM-induced protumorigenic and prometastatic activitie

    Nanomedicine strategies to target tumor-associated macrophages

    Get PDF
    In recent years, the influence of the tumor microenvironment (TME) on cancer progression has been better understood. Macrophages, one of the most important cell types in the TME, exist in different subtypes, each of which has a different function. While classically activated M1 macrophages are involved in inflammatory and malignant processes, activated M2 macrophages are more involved in the wound-healing processes occurring in tumors. Tumor-associated macrophages (TAM) display M2 macrophage characteristics and support tumor growth and metastasis by matrix remodeling, neo-angiogenesis, and suppressing local immunity. Due to their detrimental role in tumor growth and metastasis, selective targeting of TAM for the treatment of cancer may prove to be beneficial in the treatment of cancer. Due to the plastic nature of macrophages, their activities may be altered to inhibit tumor growth. In this review, we will discuss the therapeutic options for the modulation and targeting of TAM. Different therapeutic strategies to deplete, inhibit recruitment of, or re-educate TAM will be discussed. Current strategies for the targeting of TAM using nanomedicine are reviewed. Passive targeting using different nanoparticle systems is described. Since TAM display a number of upregulated surface proteins compared to non-TAM, specific targeting using targeting ligands coupled to nanoparticles is discussed in detail

    Cancer immune therapy using engineered ‛tail-flipping’ nanoliposomes targeting alternatively activated macrophages

    Get PDF
    Alternatively-activated, M2-like tumor-associated macrophages (TAM) strongly contribute to tumor growth, invasiveness and metastasis. Technologies to disable the pro-tumorigenic function of these TAMs are of high interest to immunotherapy research. Here we show that by designing engineered nanoliposomes bio-mimicking peroxidated phospholipids that are recognised and internalised by scavenger receptors, TAMs can be targeted. Incorporation of phospholipids possessing a terminal carboxylate group at the sn-2 position into nanoliposome bilayers drives their uptake by M2 macrophages with high specificity. Molecular dynamics simulation of the lipid bilayer predicts flipping of the sn-2 tail towards the aqueous phase, while molecular docking data indicates interaction of the tail with Scavenger Receptor Class B type 1 (SR-B1). In vivo, the engineered nanoliposomes are distributed specifically to M2-like macrophages and, upon delivery of the STAT6 inhibitor (AS1517499), zoledronic acid or muramyl tripeptide, these cells promote reduction of the premetastatic niche and/or tumor growth. Altogether, we demonstrate the efficiency and versatility of our engineered “tail-flipping” nanoliposomes in a pre-clinical model, which paves the way to their development as cancer immunotherapeutics in humans
    corecore