100 research outputs found

    Severe gastric variceal haemorrhage due to splenic artery thrombosis and consecutive arterial bypass

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Upper gastrointestinal haemorrhage is mainly caused by ulcers. Gastric varicosis due to portal hypertension can also be held responsible for upper gastrointestinal bleeding. Portal hypertension causes the development of a collateral circulation from the portal to the caval venous system resulting in development of oesophageal and gastric fundus varices. Those may also be held responsible for upper gastrointestinal haemorrhage.</p> <p>Case presentation</p> <p>In this study, we describe the case of a 69-year-old male with recurrent severe upper gastrointestinal bleeding caused by arterial submucosal collaterals due to idiopathic splenic artery thrombosis. The diagnosis was secured using endoscopic duplex ultrasound and angiography. The patient was successfully treated with a laparoscopic splenectomy and complete dissection of the short gastric arteries, resulting in the collapse of the submucosal arteries in the gastric wall. Follow-up gastroscopy was performed on the 12<sup>th </sup>postoperative week and showed no signs of bleeding and a significant reduction in the arterial blood flow within the gastric wall. Subsequent follow-up after 6 months also showed no further gastrointestinal bleeding as well as subjective good quality of life for the patient.</p> <p>Conclusion</p> <p>Submucosal arterial collaterals must be excluded by endosonography via endoscopy in case of recurrent upper gastrointestinal bleeding. Laparoscopic splenectomy provides adequate treatment in preventing any recurrent bleeding, if gastric arterial collaterals are caused by splenic artery thrombosis.</p

    Direct intra-abdominal pressure monitoring via piezoresistive pressure measurement: a technical note

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Piezoresistive pressure measurement technique (PRM) has previously been applied for direct IAP measurement in a porcine model using two different devices. Aim of this clinical study was to assess both devices regarding complications, reliability and agreement with IVP in patients undergoing elective abdominal surgery.</p> <p>Methods</p> <p>A prospective cohort study was performed in 20 patients randomly scheduled to receive PRM either by a Coach<sup>®</sup>-probe or an Accurate++<sup>®</sup>-probe (both MIPM, Mammendorf, Germany). Probes were placed on the greater omentum and passed through the abdominal wall paralleling routine drainages. PRM was compared with IVP measurement by t-testing and by calculating mean difference as well as limits of agreement (LA).</p> <p>Results</p> <p>There were no probe related complications. Due to technical limitations, data could be collected in 3/10 patients with Coach<sup>® </sup>and in 7/10 patients with Accurate++<sup>®</sup>. Analysis was carried out only for Accurate++<sup>®</sup>. Mean values did not differ to mean IVP values. Mean difference to IVP was 0.1 ± 2.8 mmHg (LA: -5.5 to 5.6 mmHg).</p> <p>Conclusion</p> <p>Direct IAP measurement was clinically uneventful. Although results of Accurate++<sup>® </sup>were comparable to IVP, the device might be too fragile for IAP measurements in the clinical setting. Local ethical committee trial registration: EK2024</p

    Gentamicin supplemented polyvinylidenfluoride mesh materials enhance tissue integration due to a transcriptionally reduced MMP-2 protein expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A beneficial effect of gentamicin supplemented mesh material on tissue integration is known. To further elucidate the interaction of collagen and MMP-2 in chronic foreign body reaction and to determine the significance of the MMP-2-specific regulatory element (RE-1) that is known to mediate 80% of the MMP-2 promoter activity, the spatial and temporal transcriptional regulation of the MMP-2 gene was analyzed at the cellular level.</p> <p>Methods</p> <p>A PVDF mesh material was surface modified by plasma-induced graft polymerization of acrylic acid (PVDF+PAAc). Three different gentamicin concentrations were bound to the provided active sites of the grafted mesh surfaces (2, 5 and 8 μg/mg). 75 male transgenic MMP-2/LacZ mice harbouring the LacZ reporter gene under control of MMP-2 regulatory sequence -1241/+423, excluding the RE-1 were randomized to five groups. Bilateral of the abdominal midline one of the five different meshes was implanted subcutaneously in each animal. MMP-2 gene transcription (anti-ß-galactosidase staining) and MMP-2 protein expression (anti-MMP-2 staining) were analyzed semiquantitatively by immunohistochemistry 7, 21 and 90 days after mesh implantation. The collagen type I/III ratio was analyzed by cross polarization microscopy to determine the quality of mesh integration.</p> <p>Results</p> <p>The perifilamentary ß-galactosidase expression as well as the collagen type I/III ratio increased up to the 90<sup>th </sup>day for all mesh modifications, whereas no significant changes could be observed for MMP-2 protein expression between days 21 and 90. Both the 5 and 8 μg/mg gentamicin group showed significantly reduced levels of ß-galactosidase expression and MMP-2 positive stained cells when compared to the PVDF group on day 7, 21 and 90 respectively (5 μg/mg: p < 0.05 each; 8 μg/mg: p < 0.05 each). Though the type I/III collagen ratio increased over time for all mesh modifications significant differences to the PVDF mesh were only detected for the 8 μg/mg group at all 3 time points (p < 0.05 each).</p> <p>Conclusions</p> <p>Our current data indicate that lack of RE-1 is correlated with increased mesh induced MMP-2-gene expression for coated as well as for non-coated mesh materials. Gentamicin coating reduced MMP-2 transcription and protein expression. For the 8 μg/mg group this effect is associated with an increased type I/III collagen ratio. These findings suggest that gentamicin is beneficial for tissue integration after mesh implantation, which possibly is mediated via RE-1.</p
    corecore