169 research outputs found

    Meta-analysis of prophylactic corticosteroid use in post-ERCP pancreatitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute pancreatitis is a common complication of endoscopic retrograde cholangiopancreatography and benefit of pharmacological treatment is unclear. Although prophylactic use of corticosteroid for reduction of pancreatic injury after ERCP has been evaluated, discrepancy about beneficial effect of corticosteroid on pancreatic injury still exists. The aim of current study is to evaluate effectiveness and safety of corticosteroid in prophylaxis of post-endoscopic retrograde cholangiopancreatography pancreatitis (PEP).</p> <p>Methods</p> <p>We employed the method recommended by the Cochrane Collaboration to perform a meta-analysis of seven randomized controlled trials (RCTs) of corticosteroid in prevention of post-ERCP pancreatitis (PEP) around the world.</p> <p>Results</p> <p>Most of the seven RCTs were of high quality. When the RCTs were analyzed, odds ratios (OR) for corticosteroid were 1.13 [95% CI (0.89~1.44), p = 0.32] for PEP, 1.61 [95% CI (0.74~3.52), p = 0.23] for severe PEP, 0.92 [95% CI (0.57~1.48), p = 0.73] for post-ERCP hyperamylasemia respectively. The results indicated that there were no beneficial effects of corticosteroid on acute pancreatitis and hyperamylasemia. No evidence of publication bias was found.</p> <p>Conclusion</p> <p>Corticosteroids cannot prevent pancreatic injury after ERCP. Therefore, their use in the prophylaxis of PEP is not recommended.</p

    Staging investigations for oesophageal cancer: a meta-analysis

    Get PDF
    The aim of the study was to compare the diagnostic performance of endoscopic ultrasonography (EUS), computed tomography (CT), and 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in staging of oesophageal cancer. PubMed was searched to identify English-language articles published before January 2006 and reporting on diagnostic performance of EUS, CT, and/or FDG-PET in oesophageal cancer patients. Articles were included if absolute numbers of true-positive, false-negative, false-positive, and true-negative test results were available or derivable for regional, celiac, and abdominal lymph node metastases and/or distant metastases. Sensitivities and specificities were pooled using a random effects model. Summary receiver operating characteristic analysis was performed to study potential effects of study and patient characteristics. Random effects pooled sensitivities of EUS, CT, and FDG-PET for regional lymph node metastases were 0.80 (95% confidence interval 0.75–0.84), 0.50 (0.41–0.60), and 0.57 (0.43–0.70), respectively, and specificities were 0.70 (0.65–0.75), 0.83 (0.77–0.89), and 0.85 (0.76–0.95), respectively. Diagnostic performance did not differ significantly across these tests. For detection of celiac lymph node metastases by EUS, sensitivity and specificity were 0.85 (0.72–0.99) and 0.96 (0.92–1.00), respectively. For abdominal lymph node metastases by CT, these values were 0.42 (0.29–0.54) and 0.93 (0.86–1.00), respectively. For distant metastases, sensitivity and specificity were 0.71 (0.62–0.79) and 0.93 (0.89–0.97) for FDG-PET and 0.52 (0.33–0.71) and 0.91 (0.86–0.96) for CT, respectively. Diagnostic performance of FDG-PET for distant metastases was significantly higher than that of CT, which was not significantly affected by study and patient characteristics. The results suggest that EUS, CT, and FDG-PET each play a distinctive role in the detection of metastases in oesophageal cancer patients. For the detection of regional lymph node metastases, EUS is most sensitive, whereas CT and FDG-PET are more specific tests. For the evaluation of distant metastases, FDG-PET has probably a higher sensitivity than CT. Its combined use could however be of clinical value, with FDG-PET detecting possible metastases and CT confirming or excluding their presence and precisely determining the location(s)

    JPN Guidelines for the management of acute pancreatitis:surgical management

    Get PDF
    Acute pancreatitis represents a spectrum of disease ranging from a mild, self-limited course to a rapidly progressive, severe illness. The mortality rate of severe acute pancreatitis exceeds 20%, and some patients diagnosed as mild to moderate acute pancreatitis at the onset of the disease may progress to a severe, life-threatening illness within 2–3 days. The Japanese (JPN) guidelines were designed to provide recommendations regarding the management of acute pancreatitis in patients having a diversity of clinical characteristics. This article sets forth the JPN guidelines for the surgical management of acute pancreatitis, excluding gallstone pancreatitis, by incorporating the latest evidence for the surgical management of severe pancreatitis in the Japanese-language version of the evidence-based Guidelines for the Management of Acute Pancreatitis published in 2003. Ten guidelines are proposed: (1) computed tomography-guided or ultrasound-guided fine-needle aspiration for bacteriology should be performed in patients suspected of having infected pancreatic necrosis; (2) infected pancreatic necrosis accompanied by signs of sepsis is an indication for surgical intervention; (3) patients with sterile pancreatic necrosis should be managed conservatively, and surgical intervention should be performed only in selected cases, such as those with persistent organ complications or severe clinical deterioration despite maximum intensive care; (4) early surgical intervention is not recommended for necrotizing pancreatitis; (5) necrosectomy is recommended as the surgical procedure for infected pancreatic necrosis; (6) simple drainage should be avoided after necrosectomy, and either continuous closed lavage or open drainage should be performed; (7) surgical or percutaneous drainage should be performed for pancreatic abscess; (8) pancreatic abscesses for which clinical findings are not improved by percutaneous drainage should be subjected to surgical drainage immediately; (9) pancreatic pseudocysts that produce symptoms and complications or the diameter of which increases should be drained percutaneously or endoscopically; and (10) pancreatic pseudocysts that do not tend to improve in response to percutaneous drainage or endoscopic drainage should be managed surgically
    corecore