5,923 research outputs found
On gravitomagnetic precession around black holes
We compute exactly the Lense-Thirring precession frequency for point masses
in the Kerr metric, for arbitrary black hole mass and specific angular
momentum. We show that this frequency, for point masses at or close to the
innermost stable orbit, and for holes with moderate to extreme rotation, is
less than, but comparable to the rotation frequency. Thus, if the quasi
periodic oscillations (QPOs) observed in the modulation of the X-ray flux from
some black holes candidates are due to Lense-Thirring precession of orbiting
material, we predict that a separate, distinct QPO ought to be observed in each
object.Comment: Accepted for publication in MNRAS. MN-Latex, 2 figure
Kerr metric, static observers and Fermi coordinates
The coordinate transformation which maps the Kerr metric written in standard
Boyer-Lindquist coordinates to its corresponding form adapted to the natural
local coordinates of an observer at rest at a fixed position in the equatorial
plane, i.e., Fermi coordinates for the neighborhood of a static observer world
line, is derived and discussed in a way which extends to any uniformly
circularly orbiting observer there.Comment: 15 page latex iopart class documen
Limitations of Radar Coordinates
The construction of a radar coordinate system about the world line of an
observer is discussed. Radar coordinates for a hyperbolic observer as well as a
uniformly rotating observer are described in detail. The utility of the notion
of radar distance and the admissibility of radar coordinates are investigated.
Our results provide a critical assessment of the physical significance of radar
coordinates.Comment: 12 pages, revtex and pictex macros, 3 pictex figures, 1 eps figure.
Expanded versio
Recommended from our members
Equivalent Mid-Term Results of Open vs Endoscopic Gluteal Tendon Tear Repair Using Suture Anchors in Forty-Five Patients.
BackgroundLittle is known about the relative efficacy of open (OGR) vs endoscopic (EGR) gluteal tendon repair of gluteal tendon tears in minimizing pain and restoring function. Our aim is to compare these 2 surgical techniques and quantify their impact on clinical outcomes.MethodsAll patients undergoing gluteal tendon tear repair at our institution between 2015 and 2018 were retrospectively reviewed. Pain scores, limp, hip abduction strength, and the use of analgesics were recorded preoperatively and at last follow-up. The Hip disability and Osteoarthritis Outcome Score Junior and Harris Hip Score Section1 were obtained at last follow-up. Fatty degeneration was quantified using the Goutallier-Fuchs Classification (GFC). Statistical analysis was conducted using one-way analysis of variance and t-tests.ResultsForty-five patients (mean age 66, 87% females) met inclusion criteria. Average follow-up was 20.3 months. None of the 10 patients (22%) undergoing EGR had prior surgery. Of 35 patients (78%) undergoing OGR, 12 (27%) had prior hip replacement (75% via lateral approach). The OGRs had more patients with GFC ≥2 (50% vs 11%, P = .02) and used more anchors (P = .03). Both groups showed statistical improvement (P ≤ .01) for all outcomes measured. GFC >2 was independently associated with a worst limp and Harris Hip Score Section 1 score (P = .05). EGR had a statistically higher opioid use reduction (P < .05) than OGR. Other comparisons between EGR and OGR did not reach statistical significance.ConclusionIn this series, open vs endoscopic operative approach did not impact clinical outcomes. More complex tears were treated open and with more anchors. Fatty degeneration adversely impacted outcomes. Although further evaluation of the efficacy of EGR in complex tears is indicated, both approaches can be used successfully
Self-forces from generalized Killing fields
A non-perturbative formalism is developed that simplifies the understanding
of self-forces and self-torques acting on extended scalar charges in curved
spacetimes. Laws of motion are locally derived using momenta generated by a set
of generalized Killing fields. Self-interactions that may be interpreted as
arising from the details of a body's internal structure are shown to have very
simple geometric and physical interpretations. Certain modifications to the
usual definition for a center-of-mass are identified that significantly
simplify the motions of charges with strong self-fields. A derivation is also
provided for a generalized form of the Detweiler-Whiting axiom that pointlike
charges should react only to the so-called regular component of their
self-field. Standard results are shown to be recovered for sufficiently small
charge distributions.Comment: 21 page
Emission vs Fermi coordinates: applications to relativistic positioning systems
A 4-dimensional relativistic positioning system for a general spacetime is
constructed by using the so called "emission coordinates". The results apply in
a small region around the world line of an accelerated observer carrying a
Fermi triad, as described by the Fermi metric. In the case of a Schwarzschild
spacetime modeling the gravitational field around the Earth and an observer at
rest at a fixed spacetime point, these coordinates realize a relativistic
positioning system alternative to the current GPS system. The latter is indeed
essentially conceived as Newtonian, so that it necessarily needs taking into
account at least the most important relativistic effects through Post-Newtonian
corrections to work properly. Previous results concerning emission coordinates
in flat spacetime are thus extended to this more general situation.
Furthermore, the mapping between spacetime coordinates and emission coordinates
is completely determined by means of the world function, which in the case of a
Fermi metric can be explicitly obtained.Comment: 12 pages iop style, 2 eps figures, to appear on Classical and Quantum
Gravity, 200
Gravitomagnetism in the Kerr-Newman-Taub-NUT spacetime
We study the motion of test particles and electromagnetic waves in the
Kerr-Newman-Taub-NUT spacetime in order to elucidate some of the effects
associated with the gravitomagnetic monopole moment of the source. In
particular, we determine in the linear approximation the contribution of this
monopole to the gravitational time delay and the rotation of the plane of the
polarization of electromagnetic waves. Moreover, we consider "spherical" orbits
of uncharged test particles in the Kerr-Taub-NUT spacetime and discuss the
modification of the Wilkins orbits due to the presence of the gravitomagnetic
monopole.Comment: 12 pages LaTeX iopart style, uses PicTex for 1 Figur
A computational framework for two-dimensional random walks with restarts
The treatment of two-dimensional random walks in the quarter plane leads to Markov processes which involve semi-infinite matrices having Toeplitz or block Toeplitz structure plus a low-rank correction. We propose an extension of the framework introduced in [D. A. Bini, S. Massei, and B. Meini, Math. Comp., 87 (2018), pp. 2811-2830] which allows us to deal with more general situations such as processes involving restart events. This is motivated by the need for modeling processes that can incur in unexpected failures like computer system reboots. We present a theoretical analysis of an enriched Banach algebra that, combined with appropriate algorithms, enables the numerical treatment of these problems. The results are applied to the solution of bidimensional quasi-birth-death processes with infinitely many phases which model random walks in the quarter plane, relying on the matrix analytic approach. The reliability of our approach is confirmed by extensive numerical experimentation on several case studies
Mechanics of extended masses in general relativity
The "external" or "bulk" motion of extended bodies is studied in general
relativity. Compact material objects of essentially arbitrary shape, spin,
internal composition, and velocity are allowed as long as there is no direct
(non-gravitational) contact with other sources of stress-energy. Physically
reasonable linear and angular momenta are proposed for such bodies and exact
equations describing their evolution are derived. Changes in the momenta depend
on a certain "effective metric" that is closely related to a non-perturbative
generalization of the Detweiler-Whiting R-field originally introduced in the
self-force literature. If the effective metric inside a self-gravitating body
can be adequately approximated by an appropriate power series, the
instantaneous gravitational force and torque exerted on it is shown to be
identical to the force and torque exerted on an appropriate test body moving in
the effective metric. This result holds to all multipole orders. The only
instantaneous effect of a body's self-field is to finitely renormalize the
"bare" multipole moments of its stress-energy tensor. The MiSaTaQuWa expression
for the gravitational self-force is recovered as a simple application. A
gravitational self-torque is obtained as well. Lastly, it is shown that the
effective metric in which objects appear to move is approximately a solution to
the vacuum Einstein equation if the physical metric is an approximate solution
to Einstein's equation linearized about a vacuum background.Comment: 39 pages, 2 figures; fixed equation satisfied by the Green function
used to construct the effective metri
Avaliação de impactos econômicos, sociais e ambientais de sistema de produção de morango orgânico em Pelotas, RS.
bitstream/item/79848/1/comunicado-262.pd
- …