3,411 research outputs found

    Relativistic Gravity Gradiometry: The Mashhoon--Theiss Effect

    Full text link
    In general relativity, relativistic gravity gradiometry involves the measurement of the relativistic tidal matrix, which is theoretically obtained from the projection of the Riemann curvature tensor onto the orthonormal tetrad frame of an observer. The observer's 4-velocity vector defines its local temporal axis and its local spatial frame is defined by a set of three orthonormal nonrotating gyro directions. The general tidal matrix for the timelike geodesics of Kerr spacetime has been calculated by Marck\cite{Marck}. We are interested in the measured components of the curvature tensor along the inclined "circular" geodesic orbit of a test mass about a slowly rotating astronomical object of mass MM and angular momentum JJ. Therefore, we specialize Marck's results to such a "circular" orbit that is tilted with respect to the equatorial plane of the Kerr source. To linear order in JJ, we recover the Mashhoon--Theiss effect, which is due to a small denominator ("resonance") phenomenon involving the frequency of geodetic precession. The Mashhoon--Theiss effect shows up as a special long-period gravitomagnetic part of the relativistic tidal matrix. The physical interpretation of this effect is briefly discussed.Comment: 23 pages; revtex macros used; two figures; v2: references added, presentation improved; v3: subsection V(B) added, other additions and improvement

    Gravitational self-force corrections to two-body tidal interactions and the effective one-body formalism

    Full text link
    Tidal interactions have a significant influence on the late dynamics of compact binary systems, which constitute the prime targets of the upcoming network of gravitational-wave detectors. We refine the theoretical description of tidal interactions (hitherto known only to the second post-Newtonian level) by extending our recently developed analytic self-force formalism, for extreme mass-ratio binary systems, to the computation of several tidal invariants. Specifically, we compute, to linear order in the mass ratio and to the 7.5th^{\rm th} post-Newtonian order, the following tidal invariants: the square and the cube of the gravitoelectric quadrupolar tidal tensor, the square of the gravitomagnetic quadrupolar tidal tensor, and the square of the gravitoelectric octupolar tidal tensor. Our high-accuracy analytic results are compared to recent numerical self-force tidal data by Dolan et al. \cite{Dolan:2014pja}, and, notably, provide an analytic understanding of the light ring asymptotic behavior found by them. We transcribe our kinematical tidal-invariant results in the more dynamically significant effective one-body description of the tidal interaction energy. By combining, in a synergetic manner, analytical and numerical results, we provide simple, accurate analytic representations of the global, strong-field behavior of the gravitoelectric quadrupolar tidal factor. A striking finding is that the linear-in-mass-ratio piece in the latter tidal factor changes sign in the strong-field domain, to become negative (while its previously known second post-Newtonian approximant was always positive). We, however, argue that this will be more than compensated by a probable fast growth, in the strong-field domain, of the nonlinear-in-mass-ratio contributions in the tidal factor.Comment: 38 pages, 5 figures, revtex styl

    General Relativistic Considerations of the Field Shedding Model of Fast Radio Bursts

    Full text link
    Popular models of fast radio bursts (FRBs) involve the gravitational collapse of neutron star progenitors to black holes. It has been proposed that the shedding of the strong neutron star magnetic field (BB) during the collapse is the power source for the radio emission. Previously, these models have utilized the simplicity of the Schwarzschild metric which has the restriction that the magnetic flux is magnetic "hair" that must be shed before final collapse. But, neutron stars have angular momentum and charge and a fully relativistic Kerr Newman solution exists in which BB has its source inside of the event horizon. In this letter, we consider the magnetic flux to be shed as a consequence of the electric discharge of a metastable collapsed state of a Kerr Newman black hole. It has also been argued that the shedding model will not operate due to pair creation. By considering the pulsar death line, we find that for a neutron star with B=1011βˆ’1013B = 10^{11} - 10^{13} G and a long rotation period, >1>1 s this is not a concern. We also discuss the observational evidence supporting the plausibility of magnetic flux shedding models of FRBs that are spawned from rapidly rotating progenitors.Comment: To appear in MNRAS Letters. Corrections made at proof level, major typo Eqn. 1

    High-energy hyperbolic scattering by neutron stars and black holes

    Full text link
    We investigate the hyperbolic scattering of test particles, spinning test particles and particles with spin-induced quadrupolar structure by a Kerr black hole in the ultrarelativistic regime. We also study how the features of the scattering process modify if the source of the background gravitational field is endowed with a nonzero mass quadrupole moment as described by the (approximate) Hartle-Thorne solution. We compute the scattering angle either in closed analytical form, when possible, or as a power series of the (dimensionless) inverse impact parameter. It is a function of the parameters characterizing the source (intrinsic angular momentum and mass quadrupole moment) as well as the scattered body (spin and polarizability constant). Measuring the scattering angle thus provides useful information to determine the nature of the two components of the binary system undergoing high-energy scattering processes.Comment: 12 pages; 2 figures; revtex macros use

    Two-body gravitational spin-orbit interaction at linear order in the mass ratio

    Full text link
    We analytically compute, to linear order in the mass-ratio, the "geodetic" spin precession frequency of a small spinning body orbiting a large (non-spinning) body to the eight-and-a-half post-Newtonian order, thereby extending previous analytical knowledge which was limited to the third post-Newtonian level. These results are obtained applying analytical gravitational self-force theory to the first-derivative level generalization of Detweiler's gauge-invariant redshift variable. We compare our analytic results with strong-field numerical data recently obtained by S.~R.~Dolan et al. [Phys.\ Rev.\ D {\bf 89}, 064011 (2014)]. Our new, high-post-Newtonian-order results capture the strong-field features exhibited by the numerical data. We argue that the spin-precession will diverge as β‰ˆβˆ’0.14/(1βˆ’3y)\approx -0.14/(1-3y) as the light-ring is approached. We transcribe our kinematical spin-precession results into a corresponding improved analytic knowledge of one of the two (gauge-invariant) effective gyro-gravitomagnetic ratios characterizing spin-orbit couplings within the effective-one-body formalism. We provide simple, accurate analytic fits both for spin-precession and the effective gyro-gravitomagnetic ratio. The latter fit predicts that the linear-in-mass-ratio correction to the gyro-gravitomagnetic ratio changes sign before reaching the light-ring. This strong-field prediction might be important for improving the analytic modeling of coalescing spinning binaries.Comment: 22 pages, 3 figures, revtex macro

    Detweiler's gauge-invariant redshift variable: analytic determination of the nine and nine-and-a-half post-Newtonian self-force contributions

    Full text link
    Continuing our analytic computation of the first-order self-force contribution to Detweiler's redshift variable we provide the exact expressions of the ninth and ninth-and-a-half post-Newtonian terms.Comment: 4 pages, revtex 4.1 macros use

    Observer-dependent tidal indicators in the Kerr spacetime

    Full text link
    The observer-dependent tidal effects associated with the electric and magnetic parts of the Riemann tensor with respect to an arbitrary family of observers are discussed in a general spacetime in terms of certain "tidal indicators." The features of such indicators are then explored by specializing our considerations to the family of stationary circularly rotating observers in the equatorial plane of the Kerr spacetime. There exist a number of observer families which are special for several reasons and for each of them such indicators are evaluated. The transformation laws of tidal indicators when passing from one observer to another are also discussed, clarifying the interplay among them. Our analysis shows that no equatorial plane circularly rotating observer in the Kerr spacetime can ever measure a vanishing tidal electric indicator, whereas the family of Carter's observers measures zero tidal magnetic indicator.Comment: 15 pages, 4 figures. Note that there is a misprint in Eq. (4.5) of the published version: the plus sign in front of the last term in the sum (at the beginning of the last line) should be a minus sign. The resulting Eq. (4.6) should be corrected too. However, these misprinted equations are only a re-writing of previous equations, so that the analysis of the tidal indicators is not affected. arXiv admin note: text overlap with arXiv:1306.480

    Gravitational scattering of two black holes at the fourth post-Newtonian approximation

    Full text link
    We compute the (center-of-mass frame) scattering angle Ο‡\chi of hyperboliclike encounters of two spinning black holes, at the fourth post-Newtonian approximation level for orbital effects, and at the next-to-next-to-leading order for spin-dependent effects. We find it convenient to compute the gauge-invariant scattering angle (expressed as a function of energy, orbital angular momentum and spins) by using the Effective-One-Body formalism. The contribution to scattering associated with nonlocal, tail effects is computed by generalizing to the case of unbound motions the method of time-localization of the action introduced in the case of (small-eccentricity) bound motions by Damour, Jaranowski and Sch\"afer [Phys.\ Rev.\ D {\bf 91}, no. 8, 084024 (2015)].Comment: 34 pages, n. 1 eps figure, revtex macros use

    Deviation of quadrupolar bodies from geodesic motion in a Kerr spacetime

    Full text link
    The deviation from geodesic motion of the world line of an extended body endowed with multipolar structure up to the mass quadrupole moment is studied in the Kerr background according to the Mathisson-Papapetrou-Dixon model. The properties of the quadrupole tensor are clarified by identifying the relevant components which enter the equations of motion, leading to the definition of an effective quadrupole tensor sharing its own algebraic symmetries, but also obeying those implied by the Mathisson-Papapetrou-Dixon model itself. The equations of motion are then solved analytically in the limit of small values of the characteristic length scales associated with the spin and quadrupole variables in comparison with the one associated with the background curvature and under special assumptions on body's structure and motion. The resulting quasi-circular orbit is parametrized in a Keplerian-like form, so that temporal, radial and azimuthal eccentricities as well as semi-major axis, period and periastron advance are explicitly computed and expressed in terms of gauge-invariant variables in the weak field and slow motion limit. A companion numerical study of the equations of motion is performed too.Comment: pages n. 20, fig. n. 1 (n.2 eps files), revtex macro

    Spin-geodesic deviations in the Kerr spacetime

    Full text link
    The dynamics of extended spinning bodies in the Kerr spacetime is investigated in the pole-dipole particle approximation and under the assumption that the spin-curvature force only slightly deviates the particle from a geodesic path. The spin parameter is thus assumed to be very small and the back reaction on the spacetime geometry neglected. This approach naturally leads to solve the Mathisson-Papapetrou-Dixon equations linearized in the spin variables as well as in the deviation vector, with the same initial conditions as for geodesic motion. General deviations from generic geodesic motion are studied, generalizing previous results limited to the very special case of an equatorial circular geodesic as the reference path.Comment: 19 pages, 6 figures; published versio
    • …
    corecore