26 research outputs found

    Study of Xuanhuang Pill in protecting against alcohol liver disease using ultra-performance liquid chromatography/time-of-flight mass spectrometry and network pharmacology

    Get PDF
    IntroductionXuanhuang Pill (XHP) is a traditional Chinese medicine oral formula composed of 10 herbs. This study aims to verify the hepatoprotective activity of XHP and explain its possible mechanism.MethodsThe hepatoprotective activity of XHP was evaluated by constructing a mouse model of alcoholic liver disease, and the mechanism of XHP was preliminarily explained by utilizing ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC-QTOF/MS), proteomics and network pharmacology.ResultsThe current study demonstrated that treatment with XHP ameliorated acute alcohol-induced liver injury in mice by significantly reducing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and triglycerides (TGs) and malondialdehyde (MDA) content. Remarkably, treatment also increased superoxide dismutase (SOD) activity and glutathione (GSH) content. UPLC-QTOF/MS, 199 compounds were identified as within the make-up of the XHP. Network pharmacology analysis showed that 103 targets regulated by 163 chemical components may play an important role in the protective liver effect mediated by XHP. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggest that the HIF-1, FoxO, PI3K-Akt, insulin, and thyroid hormone signaling pathways are key modulators of XHP’s effects. Finally, eight key targets including Mapk1, Mapk3, Akt1, Map2k1, Pik3ca, Pik3cg, Raf1, and Prkca were verified by molecular docking and proteomics analysis, which provide insight into the hepatoprotective effect observed with XHP treatment.ConclusionIn summary, these results improved upon knowledge of the chemical composition and the potential mechanisms of hepatoprotective action of oral XHP treatment, providing foundational support for this formulation as a viable therapeutic option for alcoholic liver disease

    Proteomics and network pharmacology of Ganshu Nuodan capsules in the prevention of alcoholic liver disease

    Get PDF
    IntroductionGanshu Nuodan is a liver-protecting dietary supplement composed of Ganoderma lucidum (G. lucidum) spore powder, Pueraria montana (Lour.) Merr. (P. montana), Salvia miltiorrhiza Bunge (S. miltiorrhiza) and Astragalus membranaceus (Fisch.) Bunge. (A. membranaceus). However, its pharmacodynamic material basis and mechanism of action remain unknown.MethodsA mouse model of acute alcohol liver disease (ALD) induced by intragastric administration of 50% alcohol was used to evaluate the hepatoprotective effect of Ganshu Nuodan. The chemical constituents of Ganshu Nuodan were comprehensively identified by UPLC-QTOF/MS, and then its pharmacodynamic material basis and potential mechanism of action were explored by proteomics and network pharmacology.ResultsGanshu Nuodan could ameliorate acute ALD, which is mainly manifested in the significant reduction of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum and malondialdehyde (MDA) content in liver and the remarkably increase of glutathione (GSH) content and superoxide dismutase (SOD) activity in liver. Totally 76 chemical constituents were identified from Ganshu Nuodan by UPLC-QTOF/MS, including 21 quinones, 18 flavonoids, 11 organic acids, 7 terpenoids, 5 ketones, 4 sterols, 3 coumarins and 7 others. Three key signaling pathways were identified via proteomics studies, namely Arachidonic acid metabolism, Retinol metabolism, and HIF-1 signaling pathway respectively. Combined with network pharmacology and molecular docking, six key targets were subsequently obtained, including Ephx2, Lta4h, Map2k1, Stat3, Mtor and Dgat1. Finally, these six key targets and their related components were verified by molecular docking, which could explain the material basis of the hepatoprotective effect of Ganshu Nuodan.ConclusionGanshu Nuodan can protect acute alcohol-induced liver injury in mice by inhibiting oxidative stress, lipid accumulation and apoptosis. Our study provides a scientific basis for the hepatoprotective effect of Ganshu Nuodan in acute ALD mice and supports its traditional application

    Three-Dimensional Reconstruction of Soybean Canopy Based on Multivision Technology for Calculation of Phenotypic Traits

    No full text
    Precise reconstruction of the morphological structure of the soybean canopy and acquisition of plant traits have great theoretical significance and practical value for soybean variety selection, scientific cultivation, and fine management. Since it is difficult to obtain all-around information on living plants with traditional single or binocular machine vision, this paper proposes a three-dimensional (3D) method of reconstructing the soybean canopy for calculation of phenotypic traits based on multivision. First, a multivision acquisition system based on the Kinect sensor was constructed to obtain all-around point cloud data of soybean in three viewpoints, with different fertility stages of soybean as the research object. Second, conditional filtering and K-nearest neighbor filtering (KNN) algorithms were used to preprocess the raw 3D point cloud. The point clouds were matched and fused by the random sample consensus (RANSAC) and iterative closest point (ICP) algorithms to accomplish the 3D reconstruction of the soybean canopy. Finally, the plant height, leafstalk angle and crown width of soybean were calculated based on the 3D reconstruction of soybean canopy. The experimental results showed that the average deviations of the method was 2.84 cm, 4.0866° and 0.0213 m, respectively. The determination coefficients between the calculated values and measured values were 0.984, 0.9195 and 0.9235. The average deviation of the RANSAC + ICP was 0.0323, which was 0.0214 lower thanthe value calculated by the ICP algorithm. The results enable the precise 3D reconstruction of living soybean plants and quantitative detection for phenotypic traits

    Ti Reactive Sintering of Electrically Conductive Al2O3–TiN Composite: Influence of Ti Particle Size and Morphology on Electrical and Mechanical Properties

    No full text
    In the current study, Al2O3–TiN composites were successfully fabricated with various particle sizes (10, 20, 30, and 50 μm) and concentrations (5, 10, 15, and 20 vol %) via a novel ball milling + Ti reactive sintering process. By applying the reactive sintering, Ti powders will transform into TiN particles, which act as mechanical reinforcements and electrical conductors in the Al2O3 matrix. The ball milling process alters the Ti powder morphology from a low-aspect-ratio sphere into a high-aspect-ratio disc, which reduces the electrical percolation threshold value from 29% to 15% in the current setup. However, such a threshold value is insensitive to the particle size. Meanwhile, the Ti particle size has a significant influence on the material’s mechanical properties. A small particle size results in less porosity and hence higher flexural strength of the composite

    Band Gap Engineering of In 2

    No full text

    Ti Reactive Sintering of Electrically Conductive Al2O3–TiN Composite: Influence of Ti Particle Size and Morphology on Electrical and Mechanical Properties

    No full text
    In the current study, Al2O3–TiN composites were successfully fabricated with various particle sizes (10, 20, 30, and 50 μm) and concentrations (5, 10, 15, and 20 vol %) via a novel ball milling + Ti reactive sintering process. By applying the reactive sintering, Ti powders will transform into TiN particles, which act as mechanical reinforcements and electrical conductors in the Al2O3 matrix. The ball milling process alters the Ti powder morphology from a low-aspect-ratio sphere into a high-aspect-ratio disc, which reduces the electrical percolation threshold value from 29% to 15% in the current setup. However, such a threshold value is insensitive to the particle size. Meanwhile, the Ti particle size has a significant influence on the material’s mechanical properties. A small particle size results in less porosity and hence higher flexural strength of the composite

    A TiO<sub>2</sub> Coated Carbon Aerogel Derived from Bamboo Pulp Fibers for Enhanced Visible Light Photo-Catalytic Degradation of Methylene Blue

    No full text
    Carbon aerogels (CA) derived from bamboo cellulose fibers were coupled with TiO2 to form CA/TiO2 hybrids, which exhibited extraordinary performance on the photo-catalytic degradation of methylene blue (MB). The structure and morphology of CA/TiO2 were characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectrum. The CA displayed a highly porous and interconnected three-dimensional framework structure, while introducing the catalytic active sites of TiO2 onto the aerogel scaffold could remarkably enhance its photo-catalytic activity. The adsorption and photo-catalytic degradation of MB by the CA/TiO2 hybrid were investigated. The maximum adsorption capacity of CA/TiO2 for MB was 18.5 mg/g, which outperformed many similar materials reported in the literature. In addition, compared with other photo-catalysts, the present CA/TiO2 demonstrated superior photo-catalytic performance. Almost 85% of MB in 50 mL solution with a MB concentration of 10 mg/L could be effectively degraded by 15 mg CA/TiO2 in 300 min

    REC8 regulates neuroblastoma cell proliferation, migration, invasion, and angiogenesis via STAT3/VEGF signaling

    No full text
    Abstract Background Neuroblastoma, one of the most prevalent childhood cancers, is often treated with surgery, radiation, and chemotherapy. However, prognosis and survival are still dismal for children with neuroblastoma at high risk. Consequently, it is vital to identify new and effective treatment targets. As a component of the meiotic cohesion complex, REC8 is involved in a wide range of malignancies. The current work assessed the impact of REC8 knockdown on SH-SY5Y and SK-N-AS neuroblastoma cells and delved into the molecular mechanism behind this effect. Methods Knockdown of REC8 using the small interfering (si) RNA technology, and the results were verified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. The Cell Counting Kit-8 (CCK-8) was used to examine cell proliferation, while flow cytometry was used to examine cell cycle progression and apoptosis. Analyses of angiogenesis included tube formation experiments. Transwell tests were used to examine cell migration and invasion. Results The data showed that downregulation of the REC8 led to a substantial decrease in cell proliferation by stopping the cell cycle in the G1 phase. REC8 knockdown significantly reduced neuroblastoma cell proliferation, migration, invasion, angiogenesis, induced cell cycle arrest, and enhanced apoptosis. We also discovered that repressing REC8 expression in neuroblastoma cell lines SH-SY5Y and SK-N-AS reduced their ability to activate the STAT3/VEGF signaling pathway. Conclusions Neuroblastoma therapy may benefit from targeting REC8 and its downstream targets

    A TiO2 Coated Carbon Aerogel Derived from Bamboo Pulp Fibers for Enhanced Visible Light Photo-Catalytic Degradation of Methylene Blue

    No full text
    Carbon aerogels (CA) derived from bamboo cellulose fibers were coupled with TiO2 to form CA/TiO2 hybrids, which exhibited extraordinary performance on the photo-catalytic degradation of methylene blue (MB). The structure and morphology of CA/TiO2 were characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectrum. The CA displayed a highly porous and interconnected three-dimensional framework structure, while introducing the catalytic active sites of TiO2 onto the aerogel scaffold could remarkably enhance its photo-catalytic activity. The adsorption and photo-catalytic degradation of MB by the CA/TiO2 hybrid were investigated. The maximum adsorption capacity of CA/TiO2 for MB was 18.5 mg/g, which outperformed many similar materials reported in the literature. In addition, compared with other photo-catalysts, the present CA/TiO2 demonstrated superior photo-catalytic performance. Almost 85% of MB in 50 mL solution with a MB concentration of 10 mg/L could be effectively degraded by 15 mg CA/TiO2 in 300 min
    corecore