22 research outputs found

    Tracking error analysis method of digital pulse power supply for heavy ion accelerator based on emd reconstruction

    No full text
    Assessment of the state of a pulse power supply requires effective and accurate methods to measure and reconstruct the tracking error. This paper proposes a tracking error measurement method for a digital pulse power supply. A de-noising algorithm based on Empirical Mode Decomposition (EMD) is used to analyse the energy of each Intrinsic Mode Function (IMF) component, identify the turning point of energy, and reconstruct the signal to obtain the accurate tracking error. The effectiveness of this EMD method is demonstrated by simulation and actual measurement. Simulation was used to compare the performance of time domain filtering, wavelet threshold de-noising, and the EMD de-noising algorithm. In practical use, the feedback of current on the prototype of the power supply is sampled and analysed as experimental data

    Metrological Standardizing for Future Microfluidic-based Point-of-Care Diagnostic Products

    No full text
    Point-of-Care diagnostic devices are considered to be one potential killer application of the maturing microfluidic technology. Metrological standardizing plays an important role in speeding up success of microfluidics from the lab bench to market. To build its own specific domain, microfluidics needs to be armed with defined vocabulary and integrated standard system. In this article, we discuss the relationship between microfluidic commercialization and standardization. Metrological issues of microfluidic technology are investigated and divided into three main categories: materials, process development and device characterization. Existing standards and associated organizations are listed while a future roadmap of microfluidic metrology is proposed

    Sequence Planning for Selective Disassembly Aiming at Reducing Energy Consumption Using a Constraints Relation Graph and Improved Ant Colony Optimization Algorithm

    No full text
    With environmental pollution and the shortage of resources becoming increasingly serious, the disassembly of certain component in mechanical products for reuse and recycling has received more attention. However, how to model a complex mechanical product accurately and simply, and minimize the number of components involved in the disassembly process remain unsolved problems. The identification of subassembly can reduce energy consumption, but the process is recursive and may change the number of components to be disassembled. In this paper, a method aiming at reducing the energy consumption based on the constraints relation graph (CRG) and the improved ant colony optimization algorithm (IACO) is proposed to find the optimal disassembly sequence. Using the CRG, the subassembly is identified and the number of components that need to be disassembled is minimized. Subsequently, the optimal disassembly sequence can be planned using IACO where a new pheromone factor is proposed to improve the convergence performance of the ant colony algorithm. Furthermore, a case study is presented to illustrate the effectiveness of the proposed method

    Effect of Viscosity Action and Capillarity on Pore-Scale Oil–Water Flowing Behaviors in a Low-Permeability Sandstone Waterflood

    No full text
    Water flooding technology is an important measure to enhance oil recovery in oilfields. Understanding the pore-scale flow mechanism in the water flooding process is of great significance for the optimization of water flooding development schemes. Viscous action and capillarity are crucial factors in the determination of the oil recovery rate of water flooding. In this paper, a direct numerical simulation (DNS) method based on a Navier–Stokes equation and a volume of fluid (VOF) method is employed to investigate the dynamic behavior of the oil–water flow in the pore structure of a low-permeability sandstone reservoir in depth, and the influencing mechanism of viscous action and capillarity on the oil–water flow is explored. The results show that the inhomogeneity variation of viscous action resulted from the viscosity difference of oil and water, and the complex pore-scale oil–water two-phase flow dynamic behaviors exhibited by capillarity play a decisive role in determining the spatial sweep region and the final oil recovery rate. The larger the viscosity ratio is, the stronger the dynamic inhomogeneity will be as the displacement process proceeds, and the greater the difference in distribution of the volumetric flow rate in different channels, which will lead to the formation of a growing viscous fingering phenomenon, thus lowering the oil recovery rate. Under the same viscosity ratio, the absolute viscosity of the oil and water will also have an essential impact on the oil recovery rate by adjusting the relative importance between viscous action and capillarity. Capillarity is the direct cause of the rapid change of the flow velocity, the flow path diversion, and the formation of residual oil in the pore space. Furthermore, influenced by the wettability of the channel and the pore structure’s characteristics, the pore-scale behaviors of capillary force—including the capillary barrier induced by the abrupt change of pore channel positions, the inhibiting effect of capillary imbibition on the flow of parallel channels, and the blockage effect induced by the newly formed oil–water interface—play a vital role in determining the pore-scale oil–water flow dynamics, and influence the final oil recovery rate of the water flooding

    An online service function chain orchestration method for profit maximization in edge computing networks

    No full text
    Abstract Network function virtualization (NFV) is an appealing solution that transforms complex network functions from dedicated hardware to software instances running in a virtualized environment. However, some new challenges will arise when deploying virtual network functions to meet the needs of NFV and edge‐computing (EC) enabled 5G networks. In this paper, we focus on the service function chain (SFC) orchestration problem for EC‐enabled networks to maximize the profit of network service providers. First, the mathematical model of SFC orchestration in NFV and EC‐enabled networks is defined. Then, a two‐stage heuristic algorithm is proposed to optimize the total revenue. Finally, the performance of the method is evaluated by simulation experiments and the results show its effectiveness

    Investigation of the Effect of Capillary Barrier on Water–Oil Movement in Water Flooding

    No full text
    Water flooding technology is widely used to improve oil recovery efficiency in oilfields. The capillary barrier effect induced by the complex pore structures in the reservoir rocks is a crucial reason for the trapping of a great deal of residual oil in oil reservoirs after water flooding. However, the formation condition along with the effect on the recovery rate of the capillary barrier under different wettability conditions should be investigated further. To bridge the gap between the microscopic mechanism of the capillary barrier effect and the macroscopic mechanism of oil displacement efficiency, a simple conceptual capillary model is constructed to obtain the formation conditions of the capillary barrier using the analysis method, and its influence on macroscopic oil displacement efficiency in the porous media model with an opening angle of 45° is systematically investigated in this study using direct numerical simulations (DNS) coupled with the volume of fluid method. The results showed that the capillary barrier effect plays a significant role in the formation of the residual oil in the reservoir rock and the contact angle and the opening angle are the primary factors for the formation of the capillary barrier. The capillary force is the driving force when the oil–water interface advances in the throat channel under water-wet conditions, while the capillary force hinders the movement of oil–water movement when the liquid flows out of the throat channel and when θ + β > 90o. Furthermore, the highest oil displacement efficiency is achieved at the intermediate capillary number and in the case that the minimum conditions of occurrence of the capillary barrier phenomenon are satisfied. This is of great significance for controlling the optimized contact angle to further enhance the oil recovery rate of current oil reservoirs using waterflooding technology

    Pore-Scale Oil-Water Flow Behaviors in Different Development Adjustment Schemes for Enhancing Oil Recovery in Waterflooding

    No full text
    Development mode adjustment is an important measure to further enhance oil recovery after primary waterflooding. Investigating the oil-water flow behaviors in the pores is significant to deepening the understanding of the macrobehavior of waterflooding and the designation of the reservoir development plan. Previous studies mainly focused on the change in recovery factor and macroflow characteristics, while less attention was paid to the causes of the change in recovery factor and the difference in macrocharacteristics. In this paper, the numerical simulation technology by coupling the Navier-Stokes equation with the method of volume of fluid is employed to investigate the dynamic formation mechanism of the remaining oil at pore-scale in the primary waterflooding, and then the pore-scale oil-water two-phase behaviors under three waterflooding development adjustment schemes: changing flooding direction, turning extraction well to injection well, and increasing injection rate are studied. The research shows that when the viscous resistance of the water-bearing channel is less than the sum of the capillary barrier and drainage capillary resistance (the resistance in the displacement of wetting phase displacement using the nonwetting phase), the remaining oil is formed. Water➔oil➔water➔oil displacement mode is formed in the process of changing flow direction, which makes the force of the phase interface tend to balance, reduces the capillary effect in waterflooding, and improves oil recovery. In the process of developing the scheme of turning extraction into an injection well, through multipoint injection, it advances from the central water-bearing area to the oil-bearing area on both sides in multiple paths, forming a larger spatial spread range than that in the change of flooding direction. Under the influence of the capillary barrier effect and drainage capillary resistance, when the injection rate is increased, the remaining oil can restart to move only when the flowing rate exceeds a certain value. The small viscous resistance in the water-bearing channel and the lateral resistance from the capillary barrier limiting the lateral sweep of water are the primary reasons for the insignificant improvement of oil recovery under the condition of a low liquid injection rate. The findings of this study can help for better understanding of pore-scale flow mechanism behaviors and their influences on the macroscopic development features in the waterflooding process

    Biochar produced at high temperature mitigates N2O emission and promotes nitrogen retention in subtropical forest soils

    No full text
    Abstract Biochar is produced by burning biomass under oxygen‐limited conditions, and it has been widely used as a soil amendment to improve soil functions such as nutrient retention. However, whether the impact of biochar application on soil nitrogen (N) transformation and N2O emission varies with the pyrolysis temperature remains unclear, especially in different forest types in subtropical regions. In this study, a 60‐day laboratory incubation experiment was conducted to evaluate the impact of biochar with different pyrolysis temperatures (300°C [BC300], 500°C [BC500], and 800°C [BC800]) on net N transformation rates and N2O emission in soils collected from Castanopsis kawakamii dominated natural forest (NF) and Chinese fir (Cunninghamia lanceolate, CF) plantation in subtropical China. The results showed that the application of biochar significantly increased soil ammonium (NH4+) content (p < 0.001) but reduced nitrate (NO3−) content (p < 0.001) compared with the control. The soil NH4+ content of the BC800 treatment was significantly higher than that of other treatments (p < 0.001). Biochar application significantly reduced soil net N mineralization (NRmin) and nitrification (NRnit) rate (p < 0.001), but increased net ammonification (NRamm) rate (p < 0.001). The application of biochar led to a remarkable decrease in cumulative N2O emission compared to the control (p < 0.001). In particular, soils treated with high‐temperature biochar emitted significantly lower N2O compared to other treatments (p < 0.001). The partial least squares path model demonstrated that biochar influenced N2O emission through a direct effect in NF soil and an indirect effect in CF soil. This study highlights the distinct role of biochar, particularly that produced under high pyrolysis temperatures as a soil amendment to mitigate N2O emission and promote N retention in both subtropical natural and planted forests
    corecore