48 research outputs found

    Stellar loci III: Photometric metallicities for half million FGK stars of Stripe 82

    Full text link
    We develop a method to estimate photometric metallicities by simultaneously fitting the dereddened colors u-g, g-r, r-i and i-z from the SDSS with those predicted by the metallicity-dependent stellar loci. The method is tested with a spectroscopic sample of main-sequence stars in Stripe 82 selected from the SDSS DR9 and three open clusters. With 1 per cent photometry, the method is capable of delivering photometric metallicities precise to about 0.05, 0.12, and 0.18 dex at metallicities of 0.0, -1.0, and -2.0, respectively, comparable to the precision achievable with low-resolution spectroscopy at a signal-to-noise ratio of 10. We apply this method to the re-calibrated Stripe 82 catalog and derive metallicities for about 0.5 million stars of colors 0.3 < g-i < 1.6 mag and distances between 0.3 -- 18 kpc. Potential systematics in the metallicities thus derived, due to the contamination of giants and binaries, are investigated. Photometric distances are also calculated. About 91, 72, and 53 per cent of the sample stars are brighter than r = 20.5, 19.5, and 18.5 mag, respectively. The median metallicity errors are around 0.19, 0.16, 0.11, and 0.085 dex for the whole sample, and for stars brighter than r = 20.5, 19.5, and 18.5 mag, respectively. The median distance errors are 8.8, 8.4, 7.7, and 7.3 per cent for the aforementioned four groups of stars, respectively. The data are publicly available. Potential applications of the data in studies of the distribution, (sub)structure, and chemistry of the Galactic stellar populations, are briefly discussed. The results will be presented in future papers.Comment: 10 pages, 10 figures, ApJ accepte

    Stellar loci I. Metallicity dependence and intrinsic widths

    Full text link
    Stellar loci are widely used for selection of interesting outliers, reddening determinations, and calibrations. However, hitherto the dependence of stellar loci on metallicity has not been fully explored and their intrinsic widths are unclear. In this paper, by combining the spectroscopic and re-calibrated imaging data of the SDSS Stripe 82, we have built a large, clean sample of dwarf stars with accurate colors and well determined metallicities to investigate the metallicity dependence and intrinsic widths of the SDSS stellar loci. Typically, one dex decrease in metallicity causes 0.20 and 0.02 mag decrease in colors u-g and g-r, and 0.02 and 0.02 mag increase in colors r-i and i-z, respectively. The variations are larger for metal-rich stars than for metal-poor ones, and for F/G/K stars than for A/M ones. Using the sample, we have performed two dimensional polynomial fitting to the u-g, g-r, r-i, and i-z colors as a function of color g-i and metallicity [Fe/H]. The residuals, at the level of 0.029, 0.008, 0.008 and 0.011 mag for the u-g, g-r, r-i, and i-z colors, respectively can be fully accounted for by the photometric errors and metallicity uncertainties, suggesting that the intrinsic widths of the loci are at maximum a few mmag. The residual distributions are asymmetric, revealing that a significant fraction of stars are binaries. In a companion paper, we will present an unbiased estimate of the binary fraction for field stars. Other potential applications of the metallicity dependent stellar loci are briefly discussed.Comment: 6 pages, 4 figures, 1 table, ApJ in pres

    A Rv map of the Milky Way revealed by LAMOST

    Full text link
    The total-to-selective extinction ratio, Rv, is a key parameter for tracing the properties of interstellar dust, as it directly determines the variation of the extinction curve with wavelength. By utilizing accurate color excess measurements from the optical to the mid-infrared range, we have derived Rv values for approximately 3 million stars from the LAMOST data release 7 (DR7) using a forward modeling technique. This extensive dataset enables us to construct a comprehensive two-dimensional Rv map of the Milky Way within the LAMOST footprint at a spatial resolution of ~27.5arcmin. Based on reliable sightlines of E(B-V) > 0.1, we find that Rv exhibits a Gaussian distribution centered around 3.25 with a standard deviation of 0.25. The spatial variability of Rv in the Galactic disk exhibits a wide range, spanning from small scales within individual molecular clouds to large scales up to kiloparsecs. A striking correlation is observed between the distribution of Rv and molecular clouds. Notably, we observe lower Rv values within the regions of nearby molecular clouds compared to their surrounding areas. Furthermore, we have investigated the relationships between Rv and various parameters, including dust temperature, dust emissivity spectral index, column density of atomic and molecular hydrogen, as well as their ratios and the gas-to-dust ratio. We find that these relationships vary with the level of extinction. These analyses provide new insights into the properties and evolution of dust grains in diverse interstellar environments and also hold significant importance for achieving accurate extinction corrections.Comment: 16 pages, 12 figures. Accepted for publication in the Astrophysical Journal Supplement Serie

    Stellar color regression: a spectroscopy based method for color calibration to a few mmag accuracy and the recalibration of Stripe 82

    Full text link
    In this paper, we propose a spectroscopy based Stellar Color Regression (SCR) method to perform accurate color calibration for modern imaging surveys, taking advantage of millions of stellar spectra now available. The method is straightforward, insensitive to systematic errors in the spectroscopically determined stellar atmospheric parameters, applicable to regions that are effectively covered by spectroscopic surveys, and capable of delivering an accuracy of a few millimagnitudes for color calibration. As an illustration, we have applied the method to the SDSS Stripe 82 data (Ivezic et al; I07 hereafter). With a total number of 23,759 spectroscopically targeted stars, we have mapped out the small but strongly correlated color zero point errors present in the photometric catalog of Stripe 82, and improve the color calibration by a factor of 2 -- 3. Our study also reveals some small but significant magnitude dependence errors in z-band for some CCDs. Such errors are likely to be present in all the SDSS photometric data. Our results are compared with those from a completely independent test based on the intrinsic colors of red galaxies presented by I07. The comparison as well as other tests shows that the SCR method has achieved a color calibration internally consistent at a level of about 5 mmag in u-g, 3 mmag in g-r, and 2 mmag in r-i and i-z, respectively. Given the power of the SCR method, we discuss briefly the potential benefits by applying the method to existing, on-going, and up-coming imaging surveys.Comment: 17 pages, 14 figures, 3 tables, ApJ in pres

    Distances to the Supernova Remnants in the Inner Disk

    Full text link
    Distance measurements of supernova remnants (SNRs) are essential and important. Accurate estimates of physical size, dust masses, and some other properties of SNRs depend critically on accurate distance measurements. However, the determination of SNR distances is still a tough task. Red clump stars (RCs) have a long history been used as standard candles. In this work, we take RCs as tracers to determine the distances to a large group of SNRs in the inner disk. We first select RC stars based on the near-infrared (IR) color-magnitude diagram (CMD). Then, the distance to and extinction of RC stars are calculated. To extend the measurable range of distance, we combine near-IR photometric data from the 2MASS survey with the deeper UKIDSS and VVV surveys. With the help of the Gaia parallaxes, we also remove contaminants including dwarfs and giants. Because an SN explosion compresses the surrounding interstellar medium, the SNR region would become denser and exhibit higher extinction than the surroundings. The distance of a SNR is then recognized by the position where the extinction and its gradient is higher than that of the ambient medium. A total of 63 SNRs' distances in the Galactic inner disk are determined and divided into three Levels A, B, and C with decreasing reliability. The distances to 43 SNRs are well determined with reliability A or B. The diameters and dust masses of SNRs are estimated with the obtained distance and extinction.Comment: 31 pages, 25 figures, 2 tables, accepted for publication in A&

    Three-dimensional structure of the milky way dust: modeling of LAMOST data

    Full text link
    We present a three-dimensional modeling of the Milky Way dust distribution by fitting the value-added star catalog of LAMOST spectral survey. The global dust distribution can be described by an exponential disk with scale-length of 3,192 pc and scale height of 103 pc. In this modeling, the Sun is located above the dust disk with a vertical distance of 23 pc. Besides the global smooth structure, two substructures around the solar position are also identified. The one located at 150∘<l<200∘150^{\circ}<l<200^{\circ} and −5∘<b<−30∘-5^{\circ}<b<-30^{\circ} is consistent with the Gould Belt model of \citet{Gontcharov2009}, and the other one located at 140∘<l<165∘140^{\circ}<l<165^{\circ} and 0∘<b<15∘0^{\circ}<b<15^{\circ} is associated with the Camelopardalis molecular clouds.Comment: 15 pages, 6 figure, accepted by Ap

    Determination of the Local Standard of Rest using the LSS-GAC DR1

    Full text link
    We re-estimate the peculiar velocity of the Sun with respect to the local standard of rest using a sample of local stars within 600 pc of the Sun, selected from the LAMOST Spectroscopic Survey of the Galactic Anti-centre (LSS-GAC). The sample consists of 94332 FGK main-sequence stars with well-determined radial velocities and atmospheric parameters. To derive the LSR, two independent analyses are applied to the data. Firstly, we determine the solar motion by comparing the observed velocity distribution to that generated with the analytic formulism of Schonrich & Binney that has been demonstrated to show excellent agreement with rigorous torus-based dynamics modelling by Binney & McMillan. Secondly, we propose that cold populations of thin disc stars, selected by applying an orbital eccentricity cut, can be directly used to determine the LSR without the need of asymmetric drift corrections. Both approaches yield consistent results of solar motion in the direction of Galactic rotation, V_sun, that are much higher than the standard value adopted hitherto, derived from Stromgren's equation. The newly deduced values of V_sun are 1-2 km/s smaller than the more recent estimates derived from the Geneva-Copenhagen Survey sample of stars in the solar neighbourhood (within 100 pc). We attribute the small difference to the presence of several well-known moving groups in the GCS sample that, fortunately, hardly affect the LSS-GAC sample. The newly derived radial and vertical components of the solar motion agree well with the previous studies. In addition, for all components of the solar motion, the values yielded by stars of different spectral types in the LSS-GAC sample are consistent with each other, suggesting that the local disk is well relaxed and that the LSR reported in the current work is robust. Our final recommended LSR is, (U,V,W)_sun = (7.01+/-0.20, 10.13+/-0.12, 4.95+/-0.09) km/s.Comment: MNRAS accepted, 13 pages, 11 figures, 7 table

    Searching for new globular clusters in M 31 with Gaia EDR3

    Full text link
    We found 50 new globular cluster (GC) candidates around M\,31 with Gaia Early Data Release 3 (EDR3), with the help from Pan-STARRS1 DR1 magnitudes and Pan-Andromeda Archaeological Survey (PAndAS) images. Based on the latest Revised Bologna Catalog and \textit{simbad}, we trained 2 Random Forest (RF) classifiers, the first one to distinguish extended sources from point sources and the second one to further select GCs from extended sources. From 1.85 million sources of 16m<g<19.5m16^m{<}g{<}19.5^m and within a large area of ∼\sim392\,deg2^2 around M\,31, we selected 20,658 extended sources and 1,934 initial GC candidates. After visual inspection of the PAndAS images to eliminate the contamination of non-cluster sources, particularly galaxies, we finally got 50 candidates. These candidates are divided into 3 types (\textbf{a}, \textbf{b}, \textbf{c}) according to their projected distance DD to the center of M\,31 and their probability to be a true GC, PGCP_{GC}, which is calculated by our second RF classifier. Among these candidates, 14 are found to be associated (in projection) with the large-scale structures within the halo of M\,31. We also provided several simple parameter criteria for selecting extended sources effectively from the Gaia EDR3, which can reach a completeness of 92.1\% with a contamination fraction lower than 10\%
    corecore