116 research outputs found

    Partial oxidation of Step-Bound Water Leads to Anomalous pH Effects on Metal Electrode Step-Edges

    Full text link
    The design of better heterogeneous catalysts for applications such as fuel cells and electrolyzers requires a mechanistic understanding of electrocatalytic reactions and the dependence of their activity on operating conditions such as pH. A satisfactory explanation for the unexpected pH dependence of electrochemical properties of platinum surfaces has so far remained elusive, with previous explanations resorting to complex co-adsorption of multiple species and resulting in limited predictive power. This knowledge gap suggests that the fundamental properties of these catalysts are not yet understood, limiting systematic improvement. Here, we analyze the change in charge and free energies upon adsorption using density-functional theory (DFT) to establish that water adsorbs on platinum step edges across a wide voltage range, including the double-layer region, with a loss of approximately 0.2 electrons upon adsorption. We show how this as-yet unreported change in net surface charge due to this water explains the anomalous pH variations of the hydrogen underpotential deposition (Hupd) and the potentials of zero total charge (PZTC) observed in published experimental data. This partial oxidation of water is not limited to platinum metal step edges, and we report the charge of the water on metal step edges of commonly used catalytic metals, including copper, silver, iridium, and palladium, illustrating that this partial oxidation of water broadly influences the reactivity of metal electrodes.Comment: 9 pages, 8 figures and 3 table

    Spinel Metal Oxide-Alkali Carbonate-Based, Low-Temperature Thermochemical Cycles for Water Splitting and CO_2 Reduction

    Get PDF
    A manganese oxide-based, thermochemical cycle for water splitting below 1000 °C has recently been reported. The cycle involves the shuttling of Na+ into and out of manganese oxides via the consumption and formation of sodium carbonate, respectively. Here, we explore the combinations of three spinel metal oxides and three alkali carbonates in thermochemical cycles for water splitting and CO_2 reduction. Hydrogen evolution and CO_2 reduction reactions of metal oxides with a given alkali carbonate occur in the following order of decreasing activity: Fe_(3)O_4 > Mn_(3)O_4 > Co_(3)O_4, whereas the reactivity of a given metal oxide with alkali carbonates declines as Li_(2)CO_3 > Na_(2)CO_3 > K_(2)CO_3. While hydrogen evolution and CO_2 reduction reactions occur at a lower temperature on the combinations with the more reactive metal oxide and alkali carbonate, higher thermal reduction temperatures and more difficult alkali ion extractions are observed for the combinations of the more reactive metal oxides and alkali carbonates. Thus, for a thermochemical cycle to be closed at low temperatures, all three reactions of hydrogen evolution (CO_2 reduction), alkali ion extraction, and thermal reduction must proceed within the specified temperature range. Of the systems investigated here, only the Na_(2)CO_3/Mn_(3)O_4 combination satisfies these criteria with a maximum operating temperature (850 °C) below 1000 °C

    Integration of thermochemical water splitting with COâ‚‚ direct air capture

    Get PDF
    Renewable production of fuels and chemicals from direct air capture (DAC) of CO₂ is a highly desired goal. Here, we report the integration of the DAC of CO₂ with the thermochemical splitting of water to produce CO₂, H₂, O₂, and electricity. The produced CO₂ and H₂ can be converted to value-added chemicals via existing technologies. The integrated process uses thermal solar energy as the only energy input and has the potential to provide the dual benefits of combating anthropogenic climate change while creating renewable chemicals. A sodium–manganese–carbonate (Mn–Na–CO₂) thermochemical water-splitting cycle that simultaneously drives renewable H₂ production and DAC of CO₂ is demonstrated. An integrated reactor is designed and fabricated to conduct all steps of the thermochemical water-splitting cycle that produces close to stoichiometric amounts (∼90%) of H₂ and O₂ (illustrated with 6 consecutive cycles). The ability of the cycle to capture 75% of the ∼400 ppm CO₂ from air is demonstrated also. A technoeconomic analysis of the integrated process for the renewable production of H₂, O₂, and electricity, as well as DAC of CO₂ shows that the proposed scheme of solar-driven H₂ production from thermochemical water splitting coupled with CO₂ DAC may be economically viable under certain circumstances

    Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane

    Get PDF
    Electroreduction of carbon dioxide to hydrocarbons and oxygenates on copper involves reduction to a carbon monoxide adsorbate followed by further transformation to hydrocarbons and oxygenates. Simultaneous improvement of these processes over a single reactive site is challenging due to the linear scaling relationship of the binding strength of key intermediates. Herein, we report improved electroreduction of carbon dioxide by exploiting a one-pot tandem catalysis mechanism based on computational and electrochemical investigations. By constructing a well-defined copper-modified silver surface, adsorbed carbon monoxide generated on the silver sites is proposed to migrate to surface copper sites for the subsequent reduction to methane, which is consistent with insights gained from operando attenuated total reflectance surface enhanced infrared absorption spectroscopic investigations. Our results provide a promising approach for designing carbon dioxide electroreduction catalysts to enable one-pot reduction of products beyond carbon monoxide and formate

    Analysis and Fault-Tolerant Control for Dual-Three-Phase PMSM Based on Virtual Healthy Model

    Get PDF
    Dual-three-phase permanent magnet synchronous machines (DTP-PMSMs) are famous for their fault-tolerant capability. However, the complex modeling, high copper loss, and torque ripple under postfault operation limit their further application. In this article, a fault-tolerant control (FTC) strategy is developed for DTP-PMSMs under the open-phase fault (OPF) with straightforward modeling and smooth output torque. The virtual healthy DTP-PMSM model, where the coordinate transformation, the modulation strategy, and the controller structure remain unchanged under OPF, is adopted in the proposed FTC scheme. And the current references are derived in sinusoidal waves with minimum copper loss. The inaccurate transmission of control signals under OPF is also focused on. Comprehensive theoretical analysis shows the relationship between the controller output voltage and the actual stator voltage should be considered in the proposed FTC strategy; otherwise, distortion in torque and current will be introduced. The voltage compensation is utilized to compensate for the voltage difference and ensure the smooth torque output. Besides, a quasi proportional resonance controller is designed to further suppress the residual torque ripple. The proposed strategy will not induce complex implementation and heavy computation burden. The simulation and experimental results prove the analysis and the effectiveness of the proposed strategy

    Oxygen induced promotion of electrochemical reduction of COâ‚‚ via co-electrolysis

    Get PDF
    Harnessing renewable electricity to drive the electrochemical reduction of COâ‚‚ is being intensely studied for sustainable fuel production and as a means for energy storage. Copper is the only monometallic electrocatalyst capable of converting COâ‚‚ to value-added products, e.g., hydrocarbons and oxygenates, but suffers from poor selectivity and mediocre activity. Multiple oxidative treatments have shown improvements in the performance of copper catalysts. However, the fundamental underpinning for such enhancement remains controversial. Here, we combine reactivity, in-situ surface-enhanced Raman spectroscopy, and computational investigations to demonstrate that the presence of surface hydroxyl species by co-electrolysis of COâ‚‚ with low concentrations of Oâ‚‚ can dramatically enhance the activity of copper catalyzed CO2 electroreduction. Our results indicate that co-electrolysis of COâ‚‚ with an oxidant is a promising strategy to introduce catalytically active species in electrocatalysis

    Oxygen induced promotion of electrochemical reduction of COâ‚‚ via co-electrolysis

    Get PDF
    Harnessing renewable electricity to drive the electrochemical reduction of COâ‚‚ is being intensely studied for sustainable fuel production and as a means for energy storage. Copper is the only monometallic electrocatalyst capable of converting COâ‚‚ to value-added products, e.g., hydrocarbons and oxygenates, but suffers from poor selectivity and mediocre activity. Multiple oxidative treatments have shown improvements in the performance of copper catalysts. However, the fundamental underpinning for such enhancement remains controversial. Here, we combine reactivity, in-situ surface-enhanced Raman spectroscopy, and computational investigations to demonstrate that the presence of surface hydroxyl species by co-electrolysis of COâ‚‚ with low concentrations of Oâ‚‚ can dramatically enhance the activity of copper catalyzed CO2 electroreduction. Our results indicate that co-electrolysis of COâ‚‚ with an oxidant is a promising strategy to introduce catalytically active species in electrocatalysis

    Fabrication of hierarchical Lewis acid Sn-BEA with tunable hydrophobicity for cellulosic sugar isomerization

    Get PDF
    Lewis acid Sn-BEA catalysts with tunable morphology and hydrophobicity were successfully synthesized by the recrystallization of post-synthetic Sn-BEA in the presence of ammonium fluoride (NH4F) and tetraethylammonium bromide (TEABr). Three-dimensionally ordered mesoporous imprinted (3DOm-i) and nanocrystalline Sn-BEA catalysts with hydrophobic surface were synthesized for the first time by the method. This recrystallization method includes the dissolution of crystalline zeolite BEA by fluoride ions and the rearrangement of different types of silanol defects in the presence of TEABr. The method allows the final products to simultaneously inherit the morphology of their parent Al-BEA zeolites, and significantly reduce silanol defects within the catalysts. The Sn-BEA catalysts synthesized from the recrystallization method show largely enhanced catalytic performance for both glucose isomerization and bulky lactose isomerization in different solvents, which is presumably due to the hydrophobic surface and improved molecular transport property in the hierarchical zeolites. The recrystallization approach is a facile and reliable strategy to improve the hydrophobicity of zeolite catalysts with tunable morphologies ranging from nanocrystals to hierarchical structures.Chemical Engineerin
    • …
    corecore