18 research outputs found

    Minimizing the fluctuation of resonance driving terms in dynamic aperture optimization

    Full text link
    Dynamic aperture (DA) is an important nonlinear property of a storage ring lattice, which has a dominant effect on beam injection efficiency and beam lifetime. Generally, minimizing both resonance driving terms (RDTs) and amplitude dependent tune shifts is an essential condition for enlarging the DA. In this paper, we study the correlation between the fluctuation of RDTs along the ring and the DA area with double- and multi-bend achromat lattices. It is found that minimizing the RDT fluctuations is more effective than minimizing RDTs themselves in enlarging the DA, and thus can serve as a very powerful indicator in the DA optimization. Besides, it is found that minimizing lower-order RDT fluctuations can also reduce higher-order RDTs, which are not only more computationally complicated but also more numerous. The effectiveness of controlling the RDT fluctuations in enlarging the DA confirms that the local cancellation of nonlinear effects used in some diffraction-limited storage ring lattices is more effective than the global cancellation

    Initial Results of the Precise Orbit Determination for the New-Generation BeiDou Satellites (BeiDou-3) Based on the iGMAS Network

    No full text
    By August 2016, 5 new-generation BeiDou satellites (BeiDou-3) have successfully been launched. The observations of a very limited number of 9 International GNSS (Global Navigation Satellite System) Monitoring and Assessment Service (iGMAS) stations and 52 Multi-GNSS Experiment (MGEX) stations from 16 July to 14 August 2016 are processed to determine the orbits of BeiDou-3 and BeiDou-2 satellites, respectively. The internal consistency and satellite laser ranging (SLR) validations are conducted for the orbit validation. BeiDou-3 MEO (Medium Earth Orbit) (C33 and C34) have larger root mean square (RMS) values than those BeiDou-3 IGSO (C31 and C32), whereas BeiDou-2 MEO satellites have smaller RMS values than the BeiDou-2 IGSO satellites. Furthermore, BeiDou-3 IGSO and BeiDou-2 satellites have RMS values at identical levels, whereas BeiDou-3 MEO satellites have larger RMS values than the BeiDou-2 MEO satellites. The RMS residuals are approximately 10 cm in the radial component and approximately 25 cm in the along component for BeiDou-3 IGSO satellites. For BeiDou-3 MEO satellites, the RMS residuals are approximately 40 cm in the radial component and approximately 60 cm in the along component. The SLR validation reports that the orbit radial component can reach an accuracy on the level of 1 decimeter and 4 decimeters for BeiDou-3 IGSO and MEO, respectively

    Constrained L1-Norm Minimization Method for Range-Based Source Localization under Mixed Sparse LOS/NLOS Environments

    No full text
    Under mixed sparse line-of-sight/non-line-of-sight (LOS/NLOS) conditions, how to quickly achieve high positioning accuracy is still a challenging task and a critical problem in the last dozen years. To settle this problem, we propose a constrained L1 norm minimization method which can reduce the effects of NLOS bias for improve positioning accuracy and speed up calculation via an iterative method. We can transform the TOA-based positioning problem into a sparse optimization one under mixed sparse LOS/NLOS conditions if we consider NLOS bias as outliers. Thus, a relatively good method to deal with sparse localization problem is L1 norm. Compared with some existing methods, the proposed method not only has the advantages of simple and intuitive principle, but also can neglect NLOS status and corresponding NLOS errors. Experimental results show that our algorithm performs well in terms of computational time and positioning accuracy

    Analysis of Precise Orbit Determination of BDS-3 MEO and IGSO Satellites Based on Several Dual-Frequency Measurement Combinations

    No full text
    The Chinese BeiDou-3 navigation satellite system (BDS-3) is capable of transmitting both old B1I, B3I signals and new B1C, B2a, B2b signals. Current BDS-3 precise orbits are generally calculated using a B1I/B3I combination considering overlap with the BeiDou-2 navigation satellite system (BDS-2). In this contribution, the observation quality of BDS-3 medium earth orbit (MEO) satellites and inclined geosynchronous orbit (IGSO) satellites are analyzed based on three aspects, i.e., carrier to noise ratio (C/N0), pseudo-range noise and pseudo-range multipath (MP). The C/N0 of the MEO satellite is 2~3 dB higher than that of the IGSO satellite at the same elevation angle. Meanwhile, the order of the Root Mean Square (RMS) values of both pseudo-range noise and MP is B1I < B1C < B3I < B2a ≈ B2b. Three kinds of combinations, i.e., B1CB2a, B1CB2b and B1IB3I, are selected for the BDS-3 precise orbit determination (POD) experiment. Orbits are assessed by the orbit-only signal-in-space range error (SISRE) computed between pairs of the three kinds of combinations in this contribution, CODE and GFZ final orbits. Orbit-only SISRE assessment shows that B1CB2a/CODE, B1CB2b/CODE, B1CB2a/GFZ and B1CB2b/GFZ are at the same level with CODE/GFZ, and the orbit-only SISRE is at the level of 5 cm for MEOs and 9 cm for IGSOs, respectively. Meanwhile, B1IB3I/CODE and B1IB3I/GFZ are about 1–2 cm worse. Inter-solution comparison between B1CB2a, B1CB2b and B1IB3I also indicate that B1CB2a and B1CB2b have good consistency, while B1IB3I shows poor performance. Satellite laser ranging (SLR) residuals indicate that the mean RMS is 3–4 cm for the four BDS-3 MEOs for CODE final orbit, GFZ final orbit, B1CB2a and B1CB2b combinations, while the mean RMS value for B1IB3I combination is a few millimeters worse, at approximately 4–5 cm

    A Robust Method to Detect BeiDou Navigation Satellite System Orbit Maneuvering/Anomalies and Its Applications to Precise Orbit Determination

    No full text
    The failure to detect anomalies and maneuvering of the orbits of navigation satellite sensors will deteriorate the performance of positioning and orbit determination. Motivated by the influence of the frequent maneuvering of BDS GEO and IGSO satellites, this paper analyzes the limitations of existing methods, where BDS orbit maneuvering and anomalies can be detected, and develops a method to solve this problem based on the RMS model of orbit mutual differences proposed in this paper. The performance of this method was assessed by comparison with the health flag of broadcast ephemeris, precise orbit products of GFZ, the O-C values of a GNSS station and a conventional method. The results show that the performance of the method developed in this paper is better than that of the conventional method when the periodicity and trend items are obvious. Meanwhile, three additional verification results show that the method developed in this paper can find error information in the merged broadcast ephemeris provided by iGMAS. Furthermore, from the testing results, it can be seen that the detection of anomaly and maneuvering items do not affect each other based on the robust thresholds constructed in this paper. In addition, the precise orbit of the maneuvering satellites can be determined under the circumstances that the maneuver information detected in this paper is used, and the root mean square (RMS) of orbit overlap comparison for GEO-03/IGSO-03 in Radial, Along, Cross, 1D-RMS are 0.7614/0.4460 m, 1.8901/0.3687 m, 0.3392/0.2069 m, 2.0657/0.6145 m, respectively

    Observational Analysis of Variation Characteristics of GPS-Based TEC Fluctuation over China

    No full text
    In this study, the characteristics of the total electron content (TEC) fluctuations and their regional differences over China were analyzed by utilizing the rate of the TEC index (ROTI) based on GPS data from 21 reference stations across China during a solar cycle. The results show that there were significant regional differences at different latitudes. Strong ionospheric TEC fluctuations were usually observed at lower latitudes in southern China, where the occurrence of TEC fluctuations demonstrated typical nighttime- and season-dependent (equinox months) features. This phenomenon was consistent with the ionospheric scintillation characteristics of this region. Additionally, compared to low-latitude China, the intensity of TEC fluctuations over mid-latitude China was significantly weaker, and the occurrence of TEC fluctuations was not a nighttime-dependent phenomenon. Moreover, the intensity of TEC fluctuations was much stronger during high solar activity than during low solar activity. Furthermore, the summer-dependent characteristics of TEC fluctuations gradually emerged over lower mid-latitude areas as equinox characteristics weakened. Similar to the equinox characteristics, the summer-dependent characteristics gradually weakened or even disappeared with the increasing latitude. Relevant discussions of this phenomenon are still relatively rare, and it requires further study and analysis

    A Three-Step Method for Determining Unhealthy Time Period of GPS Satellite Orbit in Broadcast Ephemeris and Its Preliminary Applications for Precise Orbit Determination

    No full text
    Abnormal information of satellite orbits inevitably appears in the broadcast ephemeris. Failure to obtain unhealthy information on GPS satellite orbits in precise orbit determination (POD) degrades GPS service performance. At present, the reliable unhealthy information published by the Center for Orbit Determination in Europe (CODE) is usually used, but it has at least one-day latency, and the current level of unhealthy information cannot fully meet the requirements of rapid and real-time geodetic applications, especially for non-IGS (International global navigation satellite systems (GNSS) Service) analysis centers and BeiDou navigation satellite system (BDS) users. Furthermore, the unhealthy orbit information detected by the traditional method, which is based on the synchronized pseudo-range residuals and regional observation network, cannot meet the requirement of setting separate sub-arcs in POD. In view of these problems, we propose a three-step method for determining unhealthy time periods of GPS satellite orbit in broadcast ephemeris during POD to provide reliable unhealthy information in near-real time. This method is a single-epoch solution, and it can detect unhealthy time periods in each sampling of observation in theory. It was subsequently used to detect unhealthy time periods for satellites G09 and G01 based on the 111 globally distributed tracking stations in the IGS. The performance of the new method was evaluated using cross-validation. Based on the test results, it detected an orbital leap for G09 in the broadcast ephemeris from 09:59:42 to 14:00:42 on 25 August 2017. Compared to the traditional method, the unhealthy start time using the three-step method was in better agreement with the information provided by CODE&#8217;s satellite crux files. G01 did not appear to have an orbital leap on the specified date, but it was misjudged by the traditional method. Furthermore, compared to the traditional method, the three-step method can perform unhealthy time period detection for a satellite all day long. In addition, precise orbit determination for unhealthy satellites is realized successfully with the unhealthy orbit arc information identified in this study. Compared to the CODE orbit, the root mean square and standard deviation of the new method for G09 are less than 2 cm, and the three-step method shows an improvement in accuracy compared with the traditional method. From the above results, it can be seen that this study can provide a feasible approach to meet the real-time unhealthy time period detection requirements of a satellite orbit in a broadcast ephemeris during POD. Furthermore, compared to waiting for updates of CODE&#8217;s satellite crux files or for accumulating delayed observation data, it has the potential to provide additional information in the process of generating ultra-rapid/real-time orbits

    The Preliminary Results for Five-System Ultra-Rapid Precise Orbit Determination of the One-Step Method Based on the Double-Difference Observation Model

    No full text
    The predicted parts of ultra-rapid orbits are important for (near) real-time Global Navigation Satellite System (GNSS) precise applications; and there is little research on GPS/GLONASS/BDS/Galileo/QZSS five-system ultra-rapid precise orbit determination; based on the one-step method and double-difference observation model. However; the successful development of a software platform for solving five-system ultra-rapid orbits is the basis of determining and analyzing these orbits. Besides this; the different observation models and processing strategies facilitate to validate the reliability of the various ultra-rapid orbits. In this contribution; this paper derives the double-difference observation model of five-system ultra-rapid precise orbit determination; based on a one-step method; and embeds this method and model into Bernese v5.2; thereby forming a new prototype software platform. For validation purposes; 31 days of real tracking data; collected from 130 globally-distributed International GNSS Service (IGS) multi-GNSS Experiment (MGEX) stations; are used to determine a five-system ultra-rapid precise orbit. The performance of the software platform is evaluated by analysis of the orbit discontinuities at day boundaries and by comparing the consistency with the MGEX orbits from the Deutsches GeoForschungsZentrum (GFZ); between the results of this new prototype software platform and the ultra-rapid orbit provided by the International GNSS Monitoring and Assessment System (iGMAS) analysis center (AC) at the Institute of Geodesy and Geophysics (IGG). The test results show that the average standard deviations of orbit discontinuities in the three-dimension direction are 0.022; 0.031; 0.139; 0.064; 0.028; and 0.465 m for GPS; GLONASS; BDS Inclined Geosynchronous Orbit (IGSO); BDS Mid-Earth Orbit (MEO); Galileo; and QZSS satellites; respectively. In addition; the preliminary results of the new prototype software platform show that the consistency of this platform has been significantly improved compared to the software package of the IGGAC

    Evaluation of a regional real-time precise positioning system based on GPS/BeiDou observations in Australia

    No full text
    The performance of real-time (RT) precise positioning can be improved by utilizing observations from multiple Global Navigation Satellite Systems (GNSS) instead of one particular system. Since the end of 2012, BeiDou, independently established by China, began to provide operational services for users in the Asia-Pacific regions. In this study, an regional RT precise positioning system in Australia is developed to evaluate the performance of GPS/BeiDou observations in providing high precision positioning services for users. Fixing three hourly updated satellite orbits, RT correction messages are generated and broadcasted by processing RT observation/navigation data streams from AUSCORS at the server side. At the user side, RT PPP is realized by processing RT data streams and the RT correction messages received. RT clock offsets, for which the accuracy reached 0.07 and 0.25 ns for GPS and BeiDou, respectively, can be determined. Based on these corrections, an accuracy of 12.2, 30.0 and 45.6 cm in the North, East and Up directions was achieved for the BeiDou-only solution after 30 minutes while the GPS-only solution reached 5.1, 15.3 and 15.5 cm for the same components at the same time. A further improvement of 43.7, 36.9 and 45.0 percent in the three directions, respectively, was achieved for the combined GPS/BeiDou solution. After the initialization process, the North, East and Up positioning accuracies were 5.2, 8.1 and 17.8 cm, respectively, for the BeiDou-only solution, while 1.5, 3.0, and 4.7 cm for the GPS-only solution. However, we only noticed a 20.9% improvement in the East direction was obtained for the GPS/BeiDou solution, while no improvements in the other directions were detected. It is expected that such improvements may become bigger with the increasing accuracy of the BeiDou-only solution
    corecore