46 research outputs found

    Thermally Stable N_2-Intercalated WO_3 Photoanodes for Water Oxidation

    Get PDF
    We describe stable intercalation compounds of the composition xN_2•WO_3 (x = 0.034–0.039), formed by trapping N_2 in WO_3. The incorporation of N_2 significantly reduced the absorption threshold of WO_3; notably, 0.039N_2•WO_3 anodes exhibited photocurrent under illumination at wavelengths ≤640 nm with a faradaic efficiency for O_2 evolution in 1.0 M HClO_4(aq) of nearly unity. Spectroscopic and computational results indicated that deformation of the WO3 host lattice, as well as weak electronic interactions between trapped N_2 and the WO_3 matrix, contributed to the observed red shift in optical absorption. Noble-gas-intercalated WO_3 materials similar to xN_2•WO_3 are predicted to function as photoanodes that are responsive to visible light

    Signal-induced Brd4 release from chromatin is essential for its role transition from chromatin targeting to transcriptional regulation

    Get PDF
    Bromodomain-containing protein Brd4 is shown to persistently associate with chromosomes during mitosis for transmitting epigenetic memory across cell divisions. During interphase, Brd4 also plays a key role in regulating the transcription of signal-inducible genes by recruiting positive transcription elongation factor b (P-TEFb) to promoters. How the chromatin-bound Brd4 transits into a transcriptional regulation mode in response to stimulation, however, is largely unknown. Here, by analyzing the dynamics of Brd4 during ultraviolet or hexamethylene bisacetamide treatment, we show that the signal-induced release of chromatin-bound Brd4 is essential for its functional transition. In untreated cells, almost all Brd4 is observed in association with interphase chromatin. Upon treatment, Brd4 is released from chromatin, mostly due to signal-triggered deacetylation of nucleosomal histone H4 at acetylated-lysine 5/8 (H4K5ac/K8ac). Through selective association with the transcriptional active form of P-TEFb that has been liberated from the inactive multi-subunit complex in response to treatment, the released Brd4 mediates the recruitment of this active P-TEFb to promoter, which enhances transcription at the stage of elongation. Thus, through signal-induced release from chromatin and selective association with the active form of P-TEFb, the chromatin-bound Brd4 switches its role to mediate the recruitment of P-TEFb for regulating the transcriptional elongation of signal-inducible genes.National Natural Science Foundation of China[30930046, 30670408, 81070307]; Natural Science Foundation of Fujian[C0210005, 2010J01231]; Science Planning Program of Fujian Province[2009J1010, 2010J1008]; National Foundation for fostering talents of basic science[J1030626

    Effect of Nanopores on Mechanical Properties of the Shape Memory Alloy

    No full text
    Nanoporous Shape Memory Alloys (SMA) are widely used in aerospace, military industry, medical and health and other fields. More and more attention has been paid to its mechanical properties. In particular, when the size of the pores is reduced to the nanometer level, the effect of the surface effect of the nanoporous material on the mechanical properties of the SMA will increase sharply, and the residual strain of the SMA material will change with the nanoporosity. In this work, the expression of Young’s modulus of nanopore SMA considering surface effects is first derived, which is a function of nanoporosity and nanopore size. Based on the obtained Young’s modulus, a constitutive model of nanoporous SMA considering residual strain is established. Then, the stress–strain curve of dense SMA based on the new constitutive model is drawn by numerical method. The results are in good agreement with the simulation results in the published literature. Finally, the stress-strain curves of SMA with different nanoporosities are drawn, and it is concluded that the Young’s modulus and strength limit decrease with the increase of nanoporosity

    Modified Anderson-Darling Test-Based Target Detector in Non-Homogenous Environments

    No full text
    A constant false alarm rate (CFAR) target detector in non-homogenous backgrounds is proposed. Based on K-sample Anderson-Darling (AD) tests, the method re-arranges the reference cells by merging homogenous sub-blocks surrounding the cell under test (CUT) into a new reference window to estimate the background statistics. Double partition test, clutter edge refinement and outlier elimination are used as an anti-clutter processor in the proposed Modified AD (MAD) detector. Simulation results show that the proposed MAD test based detector outperforms cell-averaging (CA) CFAR, greatest of (GO) CFAR, smallest of (SO) CFAR, order-statistic (OS) CFAR, variability index (VI) CFAR, and CUT inclusive (CI) CFAR in most non-homogenous situations

    How Magnetic Disturbance Influences the Attitude and Heading in Magnetic and Inertial Sensor-Based Orientation Estimation

    No full text
    With the advancements in micro-electromechanical systems (MEMS) technologies, magnetic and inertial sensors are becoming more and more accurate, lightweight, smaller in size as well as low-cost, which in turn boosts their applications in human movement analysis. However, challenges still exist in the field of sensor orientation estimation, where magnetic disturbance represents one of the obstacles limiting their practical application. The objective of this paper is to systematically analyze exactly how magnetic disturbances affects the attitude and heading estimation for a magnetic and inertial sensor. First, we reviewed four major components dealing with magnetic disturbance, namely decoupling attitude estimation from magnetic reading, gyro bias estimation, adaptive strategies of compensating magnetic disturbance and sensor fusion algorithms. We review and analyze the features of existing methods of each component. Second, to understand each component in magnetic disturbance rejection, four representative sensor fusion methods were implemented, including gradient descent algorithms, improved explicit complementary filter, dual-linear Kalman filter and extended Kalman filter. Finally, a new standardized testing procedure has been developed to objectively assess the performance of each method against magnetic disturbance. Based upon the testing results, the strength and weakness of the existing sensor fusion methods were easily examined, and suggestions were presented for selecting a proper sensor fusion algorithm or developing new sensor fusion method

    Switching variability index based multiple strategy CFAR detector

    No full text

    An Adaptive Orientation Estimation Method for Magnetic and Inertial Sensors in the Presence of Magnetic Disturbances

    No full text
    Magnetic and inertial sensors have been widely used to estimate the orientation of human segments due to their low cost, compact size and light weight. However, the accuracy of the estimated orientation is easily affected by external factors, especially when the sensor is used in an environment with magnetic disturbances. In this paper, we propose an adaptive method to improve the accuracy of orientation estimations in the presence of magnetic disturbances. The method is based on existing gradient descent algorithms, and it is performed prior to sensor fusion algorithms. The proposed method includes stationary state detection and magnetic disturbance severity determination. The stationary state detection makes this method immune to magnetic disturbances in stationary state, while the magnetic disturbance severity determination helps to determine the credibility of magnetometer data under dynamic conditions, so as to mitigate the negative effect of the magnetic disturbances. The proposed method was validated through experiments performed on a customized three-axis instrumented gimbal with known orientations. The error of the proposed method and the original gradient descent algorithms were calculated and compared. Experimental results demonstrate that in stationary state, the proposed method is completely immune to magnetic disturbances, and in dynamic conditions, the error caused by magnetic disturbance is reduced by 51.2% compared with original MIMU gradient descent algorithm

    Non-GDANets: Sports small object detection of thermal images with Non-Glodal decoupled Attention.

    No full text
    Because thermal infrared sport targets have rich and complex semantic information, there is a high coupling between different types of features. In view of these limitations, we propose a Non-Glodal decoupled Attention, namely,local U-shaped attention decoupling network (LUANets), which aims to decompose the coupling relationship of different sport target features in thermal infrared images and establish effective spatial dependence between them. This method takes the captured multi-scale initial features according to different levels and inputs them into the local decoupling module with U-shaped attention structure to realize the decomposition of semantic details. At the same time, considering the correlation between different targets, in the process of feature decomposition, using prior knowledge as guiding information many times to establish effective spatial dependence. Secondly, we design a two-way cross-aggregation FPN module to cross-aggregate information flows in the front and back directions to achieve feature interaction while further reducing the coupling between different types of features. The evaluation results on data such as TIIs,SportFCs and FLIR show that the LUANets method we proposed has achieved the best detection performance, with mAP of 68.72%,59.51% and 65.29%, respectively

    Analysis of Green Total Factor Productivity of Grain and Its Dynamic Distribution: Evidence from Poyang Lake Basin, China

    No full text
    Based on the grain production data of the counties (cities, districts) in Poyang Lake Basin, this paper uses the productivity index of Epsilon Based Measure of Malmquist Luenberger (EBM-ML Index) to analyse the green total factor productivity (GTFP) of grain in Poyang Lake Basin. Kernel density function and Markov analysis are used to discuss the dynamic evolution process of the distribution of GTFP of grain. The results show the following: (1) From the time dimension, the GTFP of grain is on the rise and fluctuates more frequently from 2001 to 2017, and its trend of change is determined by the combination of technical efficiency and technological progress. Moreover, from a spatial dimension, the number of counties (cities, districts) with GTFP of grain greater than 1.0 has shown an overall increase, indicating that the overall level of GTFP of grain is increasing. (2) According to the kernel density estimation results, the crest of the main peak of the kernel density curve corresponding to the GTFP of grain in Poyang Lake Basin shifts to the right, and the area formed by the right part of the GTFP of grain corresponding to the crest of the main peak of its kernel density curve gradually increases. The peak of the kernel density curve changes from “multi-peak mode” to “single-peak mode,” and the height of the main peak of the kernel density curve of GTFP of grain shows an overall decrease. Meanwhile, the right tail of the kernel density curve shows an overall extending trend. (3) According to the estimation results of the Markov chain, the GTFP of grain in Poyang Lake Basin is highly mobile from 2001 to 2017, and the counties (cities, districts) have a certain degree of agglomeration in the low, medium-low, medium-high and high levels. In other words, the long-term equilibrium state of growth of GTFP of grain remains dispersed in the state space of four level types, indicating that the divergence state of GTFP of grain in counties (cities, districts) of Poyang Lake Basin will continue for a long time in the future. The study reveals the evolution and dynamic change of GTFP of grain in Poyang Lake Basin, which has important theoretical significance and practical value for optimizing the spatial pattern and realizing the balanced development of GTFP among counties (cities, districts) of Poyang Lake Basin and consolidating China’s food security strategy

    Comprehensive analysis of gravity and magnetic anomalies in Jinniu volcanic basin for prediction of ore deposits

    No full text
    The middle and lower reaches of the Yangtze River is an important iron, copper, gold and other polymetallic metallogenic belt in China. The southern part of the Yangtze River is the southeast Hubei ore concentration area. As an important source of iron and copper deposits in China, several iron-rich copper deposits are concentrated in this area. The Jinniu volcanic basin is located in the southeastern Hubei ore concentration area. The basin has the ore potential of iron, copper, gold and other polymetallic deposits with the similar metallogenic conditions of other mining areas in this metallogenic belt. However, the basin has a thick overlying strata of magnetic rock and sedimentary rock, which increases the difficulty of ore prospecting. Therefore, it is necessary to strengthen the application of technologies for improving the effect of ore prediction. In the adjacent ore concentration areas, the prospecting work mainly focuses on gravity and magnetic data and combined with other geophysical data for comprehensive analysis, which lays a good foundation for the study of structural characteristics and the guidance of prospecting prediction. These previous works has proved that by comprehensive analysis and interpretation of high-precision gravity and magnetic data combined with other geophysical data, the tectonic framework characteristics, buried rocks and physical property distribution of the study area can be extracted, so as to infer the tectonic characteristics of the basin and its basement and put forward prospecting prediction. For the lack of systematic research and demand for prospecting in Jinniu volcanic basin, based on measured and collected geological and geophysical data, comprehensive analysis and interpretation of gravity and magnetic data combined with MT data were carried out. The techniques of linear signal extraction, multi-scale analysis, inversion and resistivity imaging, etc., were utilized to estimate the depth of the basin basement, delineate volcanic mechanism and buried rocks, and speculate fractures, basin boundary, and some areas of prospecting prospect. The such research has the guidance or reference significance for the basic geological survey and deep ore prediction in this area
    corecore