450 research outputs found

    The Form Factors of the Gauge-Invariant Three-Gluon Vertex

    Full text link
    The gauge-invariant three-gluon vertex obtained from the pinch technique is characterized by thirteen nonzero form factors, which are given in complete generality for unbroken gauge theory at one loop. The results are given in dd dimensions using both dimensional regularization and dimensional reduction, including the effects of massless gluons and arbitrary representations of massive gauge bosons, fermions, and scalars. We find interesting relations between the functional forms of the contributions from gauge bosons, fermions, and scalars. These relations hold only for the gauge-invariant pinch technique vertex and are d-dimensional incarnations of supersymmetric nonrenormalization theorems which include finite terms. The form factors are shown to simplify for N=1,2N=1,2, and 4 supersymmetry in various dimensions. In four-dimensional non-supersymmetric theories, eight of the form factors have the same functional form for massless gluons, quarks, and scalars, when written in a physically motivated tensor basis. For QCD, these include the tree-level tensor structure which has prefactor β0=(11Nc−2Nf)/3\beta_0=(11N_c-2N_f)/3, another tensor with prefactor 4Nc−Nf4N_c-N_f, and six tensors with Nc−NfN_c-N_f. In perturbative calculations our results lead naturally to an effective coupling for the three-gluon vertex which depends on three momenta and gives rise to an effective scale which governs the behavior of the vertex. The effects of nonzero internal masses are important and have a complicated threshold and pseudo-threshold structure. The results of this paper are an important part of a gauge-invariant dressed skeleton expansion and a related multi-scale analytic renormalization scheme. In this approach the scale ambiguity problem is resolved since physical kinematic invariants determine the arguments of the couplings.Comment: 53 pages, 10 figures. v2: added reference

    Macrophages in homeostatic immune function

    Get PDF
    Macrophages are not only involved in inflammatory and anti-infective processes, but also play an important role in maintaining tissue homeostasis. In this review, we summarize recent evidence investigating the role of macrophages in controlling angiogenesis, metabolism as well as salt and water balance. Particularly, we summarize the importance of macrophage tonicity enhancer binding protein (TonEBP, also termed nuclear factor of activated T-cells 5 [NFAT5]) expression in the regulation of salt and water homeostasis. Further understanding of homeostatic macrophage function may lead to new therapeutic approaches to treat ischemia, hypertension and metabolic disorders

    Elementary immunology: Na(+) as a regulator of immunity

    Get PDF
    The skin can serve as an interstitial Na(+) reservoir. Local tissue Na(+) accumulation increases with age, inflammation and infection. This increased local Na(+) availability favors pro-inflammatory immune cell function and dampens their anti-inflammatory capacity. In this review, we summarize available data on how NaCl affects various immune cells. We particularly focus on how salt promotes pro-inflammatory macrophage and T cell function and simultaneously curtails their regulatory and anti-inflammatory potential. Overall, these findings demonstrate that local Na(+) availability is a promising novel regulator of immunity. Hence, the modulation of tissue Na(+) levels bears broad therapeutic potential: increasing local Na(+) availability may help in treating infections, while lowering tissue Na(+) levels may be used to treat, for example, autoimmune and cardiovascular diseases

    Quantum Field Theory of Meson Mixing

    Get PDF
    We have developed a quantum field theoretic framework for scalar and pseudoscalar meson mixing and oscillations in time. The unitary inequivalence of the Fock space of base (unmixed) eigenstates and the physical mixed eigenstates is proven and shown to lead to a rich condensate structure. This is exploited to develop formulas for two flavor boson oscillations in systems of arbitrary boson occupation number. The mixing and oscillation can be understood in terms of vacuum condensate which interacts with the bare particles to induce non-trivial effects. We apply these formulas to analyze the mixing of η\eta with η′\eta' and comment on the KLKSK_L K_S system. In addition, we consider the mixing of boson coherent states, which may have future applications in the construction of meson lasers.Comment: 12 pages, 3 figures; Eqs.(10-12) corrected, leading to new physical insights; added paragraph under Eq.(24) explaining physical interpretation of mixing in terms of vacuum condensation; references added and minor typo correcte

    Macrophages in homeostatic immune function

    Get PDF
    Macrophages are not only involved in inflammatory and anti-infective processes, but also play an important role in maintaining tissue homeostasis. In this review, we summarize recent evidence investigating the role of macrophages in controlling angiogenesis, metabolism as well as salt and water balance. Particularly, we summarize the importance of macrophage tonicity enhancer binding protein (TonEBP, also termed nuclear factor of activated T-cells 5 [NFAT5]) expression in the regulation of salt and water homeostasis. Further understanding of homeostatic macrophage function may lead to new therapeutic approaches to treat ischemia, hypertension and metabolic disorders

    Power-law running of the effective gluon mass

    Get PDF
    The dynamically generated effective gluon mass is known to depend non-trivially on the momentum, decreasing sufficiently fast in the deep ultraviolet, in order for the renormalizability of QCD to be preserved. General arguments based on the analogy with the constituent quark masses, as well as explicit calculations using the operator-product expansion, suggest that the gluon mass falls off as the inverse square of the momentum, relating it to the gauge-invariant gluon condensate of dimension four. In this article we demonstrate that the power-law running of the effective gluon mass is indeed dynamically realized at the level of the non-perturbative Schwinger-Dyson equation. We study a gauge-invariant non-linear integral equation involving the gluon self-energy, and establish the conditions necessary for the existence of infrared finite solutions, described in terms of a momentum-dependent gluon mass. Assuming a simplified form for the gluon propagator, we derive a secondary integral equation that controls the running of the mass in the deep ultraviolet. Depending on the values chosen for certain parameters entering into the Ansatz for the fully-dressed three-gluon vertex, this latter equation yields either logarithmic solutions, familiar from previous linear studies, or a new type of solutions, displaying power-law running. In addition, it furnishes a non-trivial integral constraint, which restricts significantly (but does not determine fully) the running of the mass in the intermediate and infrared regimes. The numerical analysis presented is in complete agreement with the analytic results obtained, showing clearly the appearance of the two types of momentum-dependence, well-separated in the relevant space of parameters. Open issues and future directions are briefly discussed.Comment: 37 pages, 5 figure

    Electroweak pinch technique to all orders

    Full text link
    The generalization of the pinch technique to all orders in the electroweak sector of the Standard Model within the class of the renormalizable 't Hooft gauges, is presented. In particular, both the all-order PT gauge-boson-- and scalar--fermions vertices, as well as the diagonal and mixed gauge-boson and scalar self-energies are explicitly constructed. This is achieved through the generalization to the Standard Model of the procedure recently applied to the QCD case, which consist of two steps: (i) the identification of special Green's functions, which serve as a common kernel to all self-energy and vertex diagrams, and (ii) the study of the (on-shell) Slavnov-Taylor identities they satisfy. It is then shown that the ghost, scalar and scalar--gauge-boson Green's functions appearing in these identities capture precisely the result of the pinching action at arbitrary order. It turns out that the aforementioned Green's functions play a crucial role, their net effect being the non-trivial modification of the ghost, scalar and scalar--gauge-boson diagrams of the gauge-boson-- or scalar--fermions vertex we have started from, in such a way as to dynamically generate the characteristic ghost and scalar sector of the background field method. The pinch technique gauge-boson and scalar self-energies are also explicitly constructed by resorting to the method of the background-quantum identities.Comment: 48 pages, 8 figures; v2: typos correcte

    The General Theory of Quantum Field Mixing

    Get PDF
    We present a general theory of mixing for an arbitrary number of fields with integer or half-integer spin. The time dynamics of the interacting fields is solved and the Fock space for interacting fields is explicitly constructed. The unitary inequivalence of the Fock space of base (unmixed) eigenstates and the physical mixed eigenstates is shown by a straightforward algebraic method for any number of flavors in boson or fermion statistics. The oscillation formulas based on the nonperturbative vacuum are derived in a unified general formulation and then applied to both two and three flavor cases. Especially, the mixing of spin-1 (vector) mesons and the CKM mixing phenomena in the Standard Model are discussed emphasizing the nonperturbative vacuum effect in quantum field theory

    Hadron Spectroscopy and Structure from AdS/CFT

    Get PDF
    The AdS/CFT correspondence between conformal field theory and string states in an extended space-time has provided new insights into not only hadron spectra, but also their light-front wavefunctions. We show that there is an exact correspondence between the fifth-dimensional coordinate of anti-de Sitter space and a specific impact variable which measures the separation of the constituents within the hadron in ordinary space-time. This connection allows one to predict the form of the light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and scattering amplitudes. A new relativistic Schrodinger light-front equation is found which reproduces the results obtained using the fifth-dimensional theory. Since they are complete and orthonormal, the AdS/CFT model wavefunctions can be used as an initial ansatz for a variational treatment or as a basis for the diagonalization of the light-front QCD Hamiltonian. A number of applications of light-front wavefunctions are also discussed.Comment: Invited talk, presented at the 4th International Conference On Quarks And Nuclear Physics (QNP06), 5-10 June 2006, Madrid, Spai
    • …
    corecore