5 research outputs found

    Investigating the Responses of Microbial Communities to Banana <i>Fusarium</i> Wilt in Suppressive and Conducive Soils Based on Soil Particle-Size Differentiation

    No full text
    The microbiota plays a primary role in inhibiting plant pathogens in the soils. However, the correlation between soil particles and local microbial communities has not been fully confirmed. In this study, we contrasted the different assemblages of microbial communities between suppressive and conducive soils via the differentiation of soil particle-size fractions (PSFs). We further extracted the direct and indirect interactive associations among the soil biotic and abiotic factors by using samples from two continuous banana cropping systems. Notable differences were shown in PSF composition, biological traits (microbial communities and enzyme patterns) and physiochemical parameters between suppressive and conducive soils among the different soil fractions. For example, compared with conducive soils, suppressive soils have higher nutrient contents, fungal abundance and diversity and enzyme activities, and the extent of these differences was explored for fractions of different sizes. Moreover, the microbial taxonomic composition strongly varied between disease-suppressive and disease-conducive soils. For instance, there were significant differences in the relative abundance among key microbiology communities, such as Actinobacteria, Firmicutes, Bacteroidetes, Proteobacteria and Ascomycota, especially for antagonistic microorganisms (i.e., Streptomyces, Pseudomonas, Trichoderma, etc.) across various soil fractions. In addition, structural equation modeling (SEM) showed that the complex associations among soil PSFs, physiochemical parameters and microbial communities were mediated by multiple pathways, which then drive the soil enzyme activities and may further influence the suppressiveness of the soil. These results demonstrate that the resident microbial communities in specific soil particles may play a crucial role in the development of soil suppressiveness against banana Fusarium wilt disease

    A hydrogel-based first-aid tissue adhesive with effective hemostasis and anti-bacteria for trauma emergency management

    No full text
    Abstract Background Clinical tissue adhesives remain some critical drawbacks for managing emergency injuries, such as inadequate adhesive strength and insufficient anti-infection ability. Herein, a novel, self-healing, and antibacterial carboxymethyl chitosan/polyaldehyde dextran (CMCS/PD) hydrogel is designed as the first-aid tissue adhesive for effective trauma emergency management. Methods We examined the gel-forming time, porosity, self-healing, antibacterial properties, cytotoxicity, adhesive strength, and hemocompatibility. Liver hemorrhage, tail severance, and skin wound infection models of rats are constructed in vivo, respectively. Results Results demonstrate that the CMCS/PD hydrogel has the rapid gel-forming (~ 5 s), good self-healing, and effective antibacterial abilities, and could adhere to tissue firmly (adhesive strength of ~ 10 kPa and burst pressure of 327.5 mmHg) with excellent hemocompatibility and cytocompatibility. This suggests the great prospect of CMCS/PD hydrogel in acting as a first-aid tissue adhesive for trauma emergency management. The CMCS/PD hydrogel is observed to not only achieve rapid hemostasis for curing liver hemorrhage and tail severance in comparison to commercial hemostatic gel (Surgiflo ®) but also exhibit superior anti-infection for treating acute skin trauma compared with clinical disinfectant gel (Prontosan ®). Conclusions Overall, the CMCS/PD hydrogel offers a promising candidate for first-aid tissue adhesives to manage the trauma emergency. Because of the rapid gel-forming time, it could also be applied as a liquid first-aid bandage for mini-invasive surgical treatment. Graphical Abstrac
    corecore