88 research outputs found

    Comparative Effectiveness of Stereo-EEG versus Subdural Grids in Epilepsy Surgery

    Get PDF
    OBJECTIVE: To compare the outcomes of subdural electrode (SDE) implantations versus stereo-electroencephalography (SEEG), the two predominant methods of intracranial EEG (iEEG) performed in difficult to localize drug-resistant focal epilepsy. METHODS: The Surgical Therapies Commission of the International League Against Epilepsy created an international registry of iEEG patients implanted between 2005-2019 with ≥ 1 year follow-up. We used propensity score matching to control exposure selection bias and generate comparable cohorts. Study endpoints: 1) likelihood of resection after iEEG; 2) seizure-freedom at last follow-up; and 3) complications (composite of either post-operative infection, symptomatic intracranial hemorrhage, or permanent neurologic deficit). RESULTS: Ten study sites from seven countries and three continents contributed 2,012 patients, including 1,468 (73%) eligible for analysis (526 SDE, 942 SEEG) of whom 988 (67%) underwent subsequent resection. Propensity score matching improved covariate balance between exposure groups for all analyses. Propensity-matched patients who underwent SDE had higher odds of subsequent resective surgery (odds ratio OR = 1.4, 95% CI 1.05 - 1.84), and higher odds of complications (OR=2.24, 95% CI 1.34-3.74; unadjusted: 9.6% after SDE vs. 3.3% after SEEG). Odds of seizure-freedom in propensity-matched resected patients were 1.66 times higher (95% CI 1.21, 2.26) for SEEG compared to SDE (unadjusted: 55% seizure-free after SEEG-guided resections vs. 41% after SDE) INTERPRETATION: Compared to SEEG, SDE evaluations are more likely to lead to brain surgery in patients with drug-resistant epilepsy, but have more surgical complications and lower probability of seizure-freedom. This comparative-effectiveness study provides the highest feasible evidence level to guide decisions on iEEG. This article is protected by copyright. All rights reserved

    Inducible deletion of CD28 prior to secondary nippostrongylus brasiliensis infection impairs worm expulsion and recall of protective memory CD4 (+) T cell responses

    Get PDF
    IL-13 driven Th2 immunity is indispensable for host protection against infection with the gastrointestinal nematode Nippostronglus brasiliensis. Disruption of CD28 mediated costimulation impairs development of adequate Th2 immunity, showing an importance for CD28 during the initiation of an immune response against this pathogen. In this study, we used global CD28−/− mice and a recently established mouse model that allows for inducible deletion of the cd28 gene by oral administration of tamoxifen (CD28−/loxCre+/−+TM) to resolve the controversy surrounding the requirement of CD28 costimulation for recall of protective memory responses against pathogenic infections. Following primary infection with N. brasiliensis, CD28−/− mice had delayed expulsion of adult worms in the small intestine compared to wild-type C57BL/6 mice that cleared the infection by day 9 post-infection. Delayed expulsion was associated with reduced production of IL-13 and reduced serum levels of antigen specific IgG1 and total IgE. Interestingly, abrogation of CD28 costimulation in CD28−/loxCre+/− mice by oral administration of tamoxifen prior to secondary infection with N. brasiliensis resulted in impaired worm expulsion, similarly to infected CD28−/− mice. This was associated with reduced production of the Th2 cytokines IL-13 and IL-4, diminished serum titres of antigen specific IgG1 and total IgE and a reduced CXCR5+ TFH cell population. Furthermore, total number of CD4+ T cells and B220+ B cells secreting Th1 and Th2 cytokines were significantly reduced in CD28−/− mice and tamoxifen treated CD28−/loxCre+/− mice compared to C57BL/6 mice. Importantly, interfering with CD28 costimulatory signalling before re-infection impaired the recruitment and/or expansion of central and effector memory CD4+ T cells and follicular B cells to the draining lymph node of tamoxifen treated CD28−/loxCre+/− mice. Therefore, it can be concluded that CD28 costimulation is essential for conferring host protection during secondary N. brasiliensis infection

    Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Effective transvascular delivery of nanoparticle-based chemotherapeutics across the blood-brain tumor barrier of malignant gliomas remains a challenge. This is due to our limited understanding of nanoparticle properties in relation to the physiologic size of pores within the blood-brain tumor barrier. Polyamidoamine dendrimers are particularly small multigenerational nanoparticles with uniform sizes within each generation. Dendrimer sizes increase by only 1 to 2 nm with each successive generation. Using functionalized polyamidoamine dendrimer generations 1 through 8, we investigated how nanoparticle size influences particle accumulation within malignant glioma cells.</p> <p>Methods</p> <p>Magnetic resonance and fluorescence imaging probes were conjugated to the dendrimer terminal amines. Functionalized dendrimers were administered intravenously to rodents with orthotopically grown malignant gliomas. Transvascular transport and accumulation of the nanoparticles in brain tumor tissue was measured <it>in vivo </it>with dynamic contrast-enhanced magnetic resonance imaging. Localization of the nanoparticles within glioma cells was confirmed <it>ex vivo </it>with fluorescence imaging.</p> <p>Results</p> <p>We found that the intravenously administered functionalized dendrimers less than approximately 11.7 to 11.9 nm in diameter were able to traverse pores of the blood-brain tumor barrier of RG-2 malignant gliomas, while larger ones could not. Of the permeable functionalized dendrimer generations, those that possessed long blood half-lives could accumulate within glioma cells.</p> <p>Conclusion</p> <p>The therapeutically relevant upper limit of blood-brain tumor barrier pore size is approximately 11.7 to 11.9 nm. Therefore, effective transvascular drug delivery into malignant glioma cells can be accomplished by using nanoparticles that are smaller than 11.7 to 11.9 nm in diameter and possess long blood half-lives.</p
    • …
    corecore