47 research outputs found
Recommended from our members
Not so Dangerous After All? Venom Composition and Potency of the Pholcid (Daddy Long-Leg) Spider Physocyclus mexicanus
Pholcid spiders (Araneae: Pholcidae), officially "cellar spiders" but popularly known as "daddy long-legs," are renown for the potential of deadly toxic venom, even though venom composition and potency has never formally been studied. Here we detail the venom composition of male Physocyclus mexicanus using proteomic analyses and venom-gland transcriptomes ("venomics"). We also analyze the venom's potency on insects, and assemble available evidence regarding mammalian toxicity. The majority of the venom (51% of tryptic polypeptides and 62% of unique tryptic peptides) consists of proteins homologous to known venom toxins including enzymes (astacin metalloproteases, serine proteases and metalloendopeptidases, particularly neprilysins) and venom peptide neurotoxins. We identify 17 new groups of peptides (U1-17-PHTX) most of which are homologs of known venom peptides and are predicted to have an inhibitor cysteine knot fold; of these, 13 are confirmed in the proteome. Neprilysins (M13 peptidases), and astacins (M12 peptidases) are the most abundant venom proteins, respectively representing 15 and 11% of the individual proteins and 32 and 20% of the tryptic peptides detected in crude venom. Comparative evidence suggests that the neprilysin gene family is expressed in venoms across a range of spider taxa, but has undergone an expansion in the venoms of pholcids and may play a central functional role in these spiders. Bioassays of crude venoms on crickets resulted in an effective paralytic dose of 3.9 mu g/g, which is comparable to that of crude venoms of Plectreurys tristis and other Synspermiata taxa. However, crickets exhibit flaccid paralysis and regions of darkening that are not observed after P. tristis envenomation. Documented bites on humans make clear that while these spiders can bite, the typical result is a mild sting with no long-lasting effects. Together, the evidence we present indicates pholcid venoms are a source of interesting new peptides and proteins, and effects of bites on humans and other mammals are inconsequential.National Institute of Health [R15-GM-097696-01]; Lewis Clark College; Lewis & Clark students SophiaOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Gene content evolution in the arthropods
Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity
Evolutionary dynamics of origin and loss in the deep history of phospholipase D toxin genes
Abstract Background Venom-expressed sphingomyelinase D/phospholipase D (SMase D/PLD) enzymes evolved from the ubiquitous glycerophosphoryl diester phosphodiesterases (GDPD). Expression of GDPD-like SMaseD/PLD toxins in both arachnids and bacteria has inspired consideration of the relative contributions of lateral gene transfer and convergent recruitment in the evolutionary history of this lineage. Previous work recognized two distinct lineages, a SicTox-like (ST-like) clade including the arachnid toxins, and an Actinobacterial-toxin like (AT-like) clade including the bacterial toxins and numerous fungal homologs. Results Here we expand taxon sampling by homology detection to discover new GDPD-like SMase D/PLD homologs. The ST-like clade now includes homologs in a wider variety of arthropods along with a sister group in Cnidaria; the AT-like clade now includes additional fungal phyla and proteobacterial homologs; and we report a third clade expressed in diverse aquatic metazoan taxa, a few single-celled eukaryotes, and a few aquatic proteobacteria. GDPD-like SMaseD/PLDs have an ancient presence in chelicerates within the ST-like family and ctenophores within the Aquatic family. A rooted phylogenetic tree shows that the three clades derived from a basal paraphyletic group of proteobacterial GDPD-like SMase D/PLDs, some of which are on mobile genetic elements. GDPD-like SMase D/PLDs share a signature C-terminal motif and a shortened ÎČα1 loop, features that distinguish them from GDPDs. The three major clades also have active site loop signatures that distinguish them from GDPDs and from each other. Analysis of molecular phylogenies with respect to organismal relationships reveals a dynamic evolutionary history including both lateral gene transfer and gene duplication/loss. Conclusions The GDPD-like SMaseD/PLD enzymes derive from a single ancient ancestor, likely proteobacterial, and radiated into diverse organismal lineages at least in part through lateral gene transfer
Philoponella Republicana (Araneae, Uloboridae) as a Commensal in the Webs of Other Spiders
Volume: 23Start Page: 1End Page:
Single-Island Endemism despite Repeated Dispersal in Caribbean <i>Micrathena</i> (Araneae: Araneidae): An Updated Phylogeographic Analysis
Island biogeographers have long sought to elucidate the mechanisms behind biodiversity genesis. The Caribbean presents a unique stage on which to analyze the diversification process, due to the geologic diversity among the islands and the rich biotic diversity with high levels of island endemism. The colonization of such islands may reflect geologic heterogeneity through vicariant processes and/ or involve long-distance overwater dispersal. Here, we explore the phylogeography of the Caribbean and proximal mainland spiny orbweavers (Micrathena, Araneae), an American spider lineage that is the most diverse in the tropics and is found throughout the Caribbean. We specifically test whether the vicariant colonization via the contested GAARlandia landbridge (putatively emergent 33â35 mya), long-distance dispersal (LDD), or both processes best explain the modern Micrathena distribution. We reconstruct the phylogeny and test biogeographic hypotheses using a âtarget gene approachâ with three molecular markers (CO1, ITS-2, and 16S rRNA). Phylogenetic analyses support the monophyly of the genus but reject the monophyly of Caribbean Micrathena. Biogeographical analyses support five independent colonizations of the region via multiple overwater dispersal events, primarily from North/Central America, although the genus is South American in origin. There is no evidence for dispersal to the Greater Antilles during the timespan of GAARlandia. Our phylogeny implies greater species richness in the Caribbean than previously known, with two putative species of M. forcipata that are each single-island endemics, as well as deep divergences between the Mexican and Floridian M. sagittata. Micrathena is an unusual lineage among arachnids, having colonized the Caribbean multiple times via overwater dispersal after the submergence of GAARlandia. On the other hand, single-island endemism and undiscovered diversity are nearly universal among all but the most dispersal-prone arachnid groups in the Caribbean
Biogeography of Long-Jawed Spiders Reveals Multiple Colonization of the Caribbean
Dispersal ability can affect levels of gene flow thereby shaping species distributions and richness patterns. The intermediate dispersal model of biogeography (IDM) predicts that in island systems, species diversity of those lineages with an intermediate dispersal potential is the highest. Here, we tested this prediction on long-jawed spiders (Tetragnatha) of the Caribbean archipelago using phylogenies from a total of 318 individuals delineated into 54 putative species. Our results support a Tetragnatha monophyly (within our sampling) but reject the monophyly of the Caribbean lineages, where we found low endemism yet high diversity. The reconstructed biogeographic history detects a potential early overwater colonization of the Caribbean, refuting an ancient vicariant origin of the Caribbean Tetragnatha as well as the GAARlandia land-bridge scenario. Instead, the results imply multiple colonization events to and from the Caribbean from the mid-Eocene to late-Miocene. Among arachnids, Tetragnatha uniquely comprises both excellently and poorly dispersing species. A direct test of the IDM would require consideration of three categories of dispersers; however, long-jawed spiders do not fit one of these three a priori definitions, but rather represent a more complex combination of attributes. A taxon such as Tetragnatha, one that readily undergoes evolutionary changes in dispersal propensity, can be referred to as a âdynamic disperserâ
Biogeography of the Caribbean Cyrtognatha spiders
Abstract Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene flow and diversification of dispersal-limited organisms. Here we focus on an orbweaver spider genus Cyrtognatha (Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifically, we test if Cyrtognatha biogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampled Cyrtognatha individuals, using models with and without a founder event parameter. Our results suggest a radiation of Caribbean Cyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola, Cyrtognatha subsequently dispersed to, and diversified on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event
Spintharus flavidus in the Caribbeanâa 30 million year biogeographical history and radiation of a âwidespread speciesâ
The Caribbean island biota is characterized by high levels of endemism, the result of an interplay between colonization opportunities on islands and effective oceanic barriers among them. A relatively small percentage of the biota is represented by âwidespread species,â presumably taxa for which oceanic barriers are ineffective. Few studies have explored in detail the genetic structure of widespread Caribbean taxa. The cobweb spider Spintharus flavidus Hentz, 1850 (Theridiidae) is one of two described Spintharus species and is unique in being widely distributed from northern N. America to Brazil and throughout the Caribbean. As a taxonomic hypothesis, Spintharus âflavidusâ predicts maintenance of gene flow among Caribbean islands, a prediction that seems contradicted by known S. flavidus biology, which suggests limited dispersal ability. As part of an extensive survey of Caribbean arachnids (project CarBio), we conducted the first molecular phylogenetic analysis of S. flavidus with the primary goal of testing the âwidespread speciesâ hypothesis. Our results, while limited to three molecular loci, reject the hypothesis of a single widespread species. Instead this lineage seems to represent a radiation with at least 16 species in the Caribbean region. Nearly all are short range endemics with several distinct mainland groups and others are single island endemics. While limited taxon sampling, with a single specimen from S. America, constrains what we can infer about the biogeographical history of the lineage, clear patterns still emerge. Consistent with limited overwater dispersal, we find evidence for a single colonization of the Caribbean about 30 million years ago, coinciding with the timing of the GAARLandia landbridge hypothesis. In sum, S. âflavidusâ is not a single species capable of frequent overwater dispersal, but rather a 30 my old radiation of single island endemics that provides preliminary support for a complex and contested geological hypothesis