4 research outputs found

    Neural Network Architecture for Credibility Assessment of Textual Claims

    Full text link
    Text articles with false claims, especially news, have recently become aggravating for the Internet users. These articles are in wide circulation and readers face difficulty discerning fact from fiction. Previous work on credibility assessment has focused on factual analysis and linguistic features. The task's main challenge is the distinction between the features of true and false articles. In this paper, we propose a novel approach called Credibility Outcome (CREDO) which aims at scoring the credibility of an article in an open domain setting. CREDO consists of different modules for capturing various features responsible for the credibility of an article. These features includes credibility of the article's source and author, semantic similarity between the article and related credible articles retrieved from a knowledge base, and sentiments conveyed by the article. A neural network architecture learns the contribution of each of these modules to the overall credibility of an article. Experiments on Snopes dataset reveals that CREDO outperforms the state-of-the-art approaches based on linguistic features.Comment: Best Paper Award at 19th International Conference on Computational Linguistics and Intelligent Text Processing, March 2018, Hanoi, Vietna

    Emotions are Universal: Learning Sentiment Based Representations of Resource-Poor Languages using Siamese Networks

    Full text link
    Machine learning approaches in sentiment analysis principally rely on the abundance of resources. To limit this dependence, we propose a novel method called Siamese Network Architecture for Sentiment Analysis (SNASA) to learn representations of resource-poor languages by jointly training them with resource-rich languages using a siamese network. SNASA model consists of twin Bi-directional Long Short-Term Memory Recurrent Neural Networks (Bi-LSTM RNN) with shared parameters joined by a contrastive loss function, based on a similarity metric. The model learns the sentence representations of resource-poor and resource-rich language in a common sentiment space by using a similarity metric based on their individual sentiments. The model, hence, projects sentences with similar sentiment closer to each other and the sentences with different sentiment farther from each other. Experiments on large-scale datasets of resource-rich languages - English and Spanish and resource-poor languages - Hindi and Telugu reveal that SNASA outperforms the state-of-the-art sentiment analysis approaches based on distributional semantics, semantic rules, lexicon lists and deep neural network representations without shComment: Accepted Long Paper at 19th International Conference on Computational Linguistics and Intelligent Text Processing, March 2018, Hanoi, Vietnam. arXiv admin note: text overlap with arXiv:1804.0080

    Sentiment Analysis of Code-Mixed Languages leveraging Resource Rich Languages

    Full text link
    Code-mixed data is an important challenge of natural language processing because its characteristics completely vary from the traditional structures of standard languages. In this paper, we propose a novel approach called Sentiment Analysis of Code-Mixed Text (SACMT) to classify sentences into their corresponding sentiment - positive, negative or neutral, using contrastive learning. We utilize the shared parameters of siamese networks to map the sentences of code-mixed and standard languages to a common sentiment space. Also, we introduce a basic clustering based preprocessing method to capture variations of code-mixed transliterated words. Our experiments reveal that SACMT outperforms the state-of-the-art approaches in sentiment analysis for code-mixed text by 7.6% in accuracy and 10.1% in F-score.Comment: Accepted Long Paper at 19th International Conference on Computational Linguistics and Intelligent Text Processing, March 2018, Hanoi, Vietnam. arXiv admin note: text overlap with arXiv:1804.0080
    corecore