164 research outputs found

    Proteomic identification of heterogeneous nuclear ribonucleoprotein L as a novel component of SLM/Sam68 nuclear bodies

    Get PDF
    Background: Active pre-mRNA splicing occurs co-transcriptionally, and takes place throughout the nucleoplasm of eukaryotic cells. Splicing decisions are controlled by networks of nuclear RNA-binding proteins and their target sequences, sometimes in response to signalling pathways. Sam68 (Src-associated in mitosis 68 kDa) is the prototypic member of the STAR (Signal Transduction and Activation of RNA) family of RNA-binding proteins, which regulate splicing in response to signalling cascades. Nuclear Sam68 protein is concentrated within subnuclear organelles called SLM/Sam68 Nuclear Bodies (SNBs), which also contain some other splicing regulators, signalling components and nucleic acids. Results: We used proteomics to search for the major interacting protein partners of nuclear Sam68. In addition to Sam68 itself and known Sam68-associated proteins (heterogeneous nuclear ribonucleoproteins hnRNP A1, A2/B1 and G), we identified hnRNP L as a novel Sam68-interacting protein partner. hnRNP L protein was predominantly present within small nuclear protein complexes approximating to the expected size of monomers and dimers, and was quantitatively associated with nucleic acids. hnRNP L spatially co-localised with Sam68 as a novel component of SNBs and was also observed within the general nucleoplasm. Localisation within SNBs was highly specific to hnRNP L and was not shared by the closely-related hnRNP LL protein, nor any of the other Sam68-interacting proteins we identified by proteomics. The interaction between Sam68 and hnRNP L proteins was observed in a cell line which exhibits low frequency of SNBs suggesting that this association also takes place outside SNBs. Although ectopic expression of hnRNP L and Sam68 proteins independently affected splicing of CD44 variable exon v5 and TJP1 exon 20 minigenes, these proteins did not, however, co-operate with each other in splicing regulation of these target exons. Conclusion: Here we identify hnRNP L as a novel SNB component. We show that, compared with other identified Sam68-associated hnRNP proteins and hnRNP LL, this co-localisation within SNBs is specific to hnRNP L. Our data suggest that the novel Sam68-hnRNP L protein interaction may have a distinct role within SNBs

    SMN-assisted assembly of snRNP-specific Sm cores in trypanosomes.

    Get PDF
    Spliceosomal small nuclear ribonucleoproteins (snRNPs) in trypanosomes contain either the canonical heptameric Sm ring (U1, U5, spliced leader snRNPs), or variant Sm cores with snRNA-specific Sm subunits (U2, U4 snRNPs). Searching for specificity factors, we identified SMN and Gemin2 proteins that are highly divergent from known orthologs. SMN is splicing-essential in trypanosomes and nuclear-localized, suggesting that Sm core assembly in trypanosomes is nuclear. We demonstrate in vitro that SMN is sufficient to confer specificity of canonical Sm core assembly and to discriminate against binding to nonspecific RNA and to U2 and U4 snRNAs. SMN interacts transiently with the SmD3B subcomplex, contacting specifically SmB. SMN remains associated throughout the assembly of the Sm heteroheptamer and dissociates only when a functional Sm site is incorporated. These data establish a novel role of SMN, mediating snRNP specificity in Sm core assembly, and yield new biochemical insight into the mechanism of SMN activity

    2 Terbium(III) Footprinting as a Probe of RNA Structure and Metal Binding Sites

    Get PDF
    Introduction Cations play a pivotal role in RNA structure and function. A functional RNA tertiary structure is stabilized by metal ions that neutralize and, in the case of multivalent ions, bridge the negatively charged phosphoribose backbon
    corecore