9,104 research outputs found

    Darwinian Data Structure Selection

    Get PDF
    Data structure selection and tuning is laborious but can vastly improve an application's performance and memory footprint. Some data structures share a common interface and enjoy multiple implementations. We call them Darwinian Data Structures (DDS), since we can subject their implementations to survival of the fittest. We introduce ARTEMIS a multi-objective, cloud-based search-based optimisation framework that automatically finds optimal, tuned DDS modulo a test suite, then changes an application to use that DDS. ARTEMIS achieves substantial performance improvements for \emph{every} project in 55 Java projects from DaCapo benchmark, 88 popular projects and 3030 uniformly sampled projects from GitHub. For execution time, CPU usage, and memory consumption, ARTEMIS finds at least one solution that improves \emph{all} measures for 86%86\% (37/4337/43) of the projects. The median improvement across the best solutions is 4.8%4.8\%, 10.1%10.1\%, 5.1%5.1\% for runtime, memory and CPU usage. These aggregate results understate ARTEMIS's potential impact. Some of the benchmarks it improves are libraries or utility functions. Two examples are gson, a ubiquitous Java serialization framework, and xalan, Apache's XML transformation tool. ARTEMIS improves gson by 16.516.5\%, 1%1\% and 2.2%2.2\% for memory, runtime, and CPU; ARTEMIS improves xalan's memory consumption by 23.523.5\%. \emph{Every} client of these projects will benefit from these performance improvements.Comment: 11 page

    Properties of iterative Monte Carlo single histogram reweighting

    Full text link
    We present iterative Monte Carlo algorithm for which the temperature variable is attracted by a critical point. The algorithm combines techniques of single histogram reweighting and linear filtering. The 2d Ising model of ferromagnet is studied numerically as an illustration. In that case, the iterations uncovered stationary regime with invariant probability distribution function of temperature which is peaked nearly the pseudocritical temperature of specific heat. The sequence of generated temperatures is analyzed in terms of stochastic autoregressive model. The error of histogram reweighting can be better understood within the suggested model. The presented model yields a simple relation, connecting variance of pseudocritical temperature and parameter of linear filtering.Comment: 3 figure

    Critical behavior of colloid-polymer mixtures in random porous media

    Full text link
    We show that the critical behavior of a colloid-polymer mixture inside a random porous matrix of quenched hard spheres belongs to the universality class of the random-field Ising model. We also demonstrate that random-field effects in colloid-polymer mixtures are surprisingly strong. This makes these systems attractive candidates to study random-field behavior experimentally.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Shape Effects of Finite-Size Scaling Functions for Anisotropic Three-Dimensional Ising Models

    Full text link
    The finite-size scaling functions for anisotropic three-dimensional Ising models of size L1×L1×aL1L_1 \times L_1 \times aL_1 (aa: anisotropy parameter) are studied by Monte Carlo simulations. We study the aa dependence of finite-size scaling functions of the Binder parameter gg and the magnetization distribution function p(m)p(m). We have shown that the finite-size scaling functions for p(m)p(m) at the critical temperature change from a two-peak structure to a single-peak one by increasing or decreasing aa from 1. We also study the finite-size scaling near the critical temperature of the layered square-lattice Ising model, when the systems have a large two-dimensional anisotropy. We have found the three-dimensional and two-dimensional finite-size scaling behavior depending on the parameter which is fixed; a unified view of 3D and 2D finite-size scaling behavior has been obtained for the anisotropic 3D Ising models.Comment: 6 pages including 11 eps figures, RevTeX, to appear in J. Phys.

    Vertex dynamics during domain growth in three-state models

    Full text link
    Topological aspects of interfaces are studied by comparing quantitatively the evolving three-color patterns in three different models, such as the three-state voter, Potts and extended voter models. The statistical analysis of some geometrical features allows to explore the role of different elementary processes during distinct coarsening phenomena in the above models.Comment: 4 pages, 5 figures, to be published in PR

    Finite-size Scaling and Universality above the Upper Critical Dimensionality

    Full text link
    According to renormalization theory, Ising systems above their upper critical dimensionality d_u = 4 have classical critical behavior and the ratio of magnetization moments Q = ^2 / has the universal value 0.456947... However, Monte Carlo simulations of d = 5 Ising models have been reported which yield strikingly different results, suggesting that the renormalization scenario is incorrect. We investigate this issue by simulation of a more general model in which d_u < 4, and a careful analysis of the corrections to scaling. Our results are in a perfect agreement with the renormalization theory and provide an explanation of the discrepancy mentioned.Comment: 5 pages RevTeX, 1 PostScript figure. Accepted for publication in Physical Review Letter
    • 

    corecore