10,214 research outputs found
Self-organizing, two-temperature Ising model describing human segregation
A two-temperature Ising-Schelling model is introduced and studied for
describing human segregation. The self-organized Ising model with Glauber
kinetics simulated by M\"uller et al. exhibits a phase transition between
segregated and mixed phases mimicking the change of tolerance (local
temperature) of individuals. The effect of external noise is considered here as
a second temperature added to the decision of individuals who consider change
of accommodation. A numerical evidence is presented for a discontinuous phase
transition of the magnetization.Comment: 5 pages, 4 page
Ab Initio Calculations of Even Oxygen Isotopes with Chiral Two- Plus Three-Nucleon Interactions
We formulate the In-Medium Similarity Renormalization Group (IM-SRG) for
open-shell nuclei using a multi-reference formalism based on a generalized Wick
theorem introduced in quantum chemistry. The resulting multi-reference IM-SRG
(MR-IM-SRG) is used to perform the first ab initio study of even oxygen
isotopes with chiral NN and 3N Hamiltonians, from the proton to the neutron
drip lines. We obtain an excellent reproduction of experimental ground-state
energies with quantified uncertainties, which is validated by results from the
Importance-Truncated No-Core Shell Model and the Coupled Cluster method. The
agreement between conceptually different many-body approaches and experiment
highlights the predictive power of current chiral two- and three-nucleon
interactions, and establishes the MR-IM-SRG as a promising new tool for ab
initio calculations of medium-mass nuclei far from shell closures.Comment: 5 pages, 4 figures, v2 corresponding to published versio
Alternating steady state in one-dimensional flocking
We study flocking in one dimension, introducing a lattice model in which
particles can move either left or right. We find that the model exhibits a
continuous nonequilibrium phase transition from a condensed phase, in which a
single `flock' contains a finite fraction of the particles, to a homogeneous
phase; we study the transition using numerical finite-size scaling.
Surprisingly, in the condensed phase the steady state is alternating, with the
mean direction of motion of particles reversing stochastically on a timescale
proportional to the logarithm of the system size. We present a simple argument
to explain this logarithmic dependence. We argue that the reversals are
essential to the survival of the condensate. Thus, the discrete directional
symmetry is not spontaneously broken.Comment: 8 pages LaTeX2e, 5 figures. Uses epsfig and IOP style. Submitted to
J. Phys. A (Math. Gen.
Coupled Fluctuations near Critical Wetting
Recent work on the complete wetting transition has emphasized the role played
by the coupling of fluctuations of the order parameter at the wall and at the
depinning fluid interface. Extending this approach to the wetting transition
itself we predict a novel crossover effect associated with the decoupling of
fluctuations as the temperature is lowered towards the transition temperature
T_W. Using this we are able to reanalyse recent Monte-Carlo simulation studies
and extract a value \omega(T_W)=0.8 at T_W=0.9T_C in very good agreement with
long standing theoretical predictions.Comment: 4 pages, LaTex, 1 postscript figur
Non-monotonous crossover between capillary condensation and interface localisation/delocalisation transition in binary polymer blends
Within self-consistent field theory we study the phase behaviour of a
symmetric binary AB polymer blend confined into a thin film. The film surfaces
interact with the monomers via short range potentials. One surface attracts the
A component and the corresponding semi-infinite system exhibits a first order
wetting transition. The surface interaction of the opposite surface is varied
as to study the crossover from capillary condensation for symmetric surface
fields to the interface localisation/delocalisation transition for
antisymmetric surface fields. In the former case the phase diagram has a single
critical point close to the bulk critical point. In the latter case the phase
diagram exhibits two critical points which correspond to the prewetting
critical points of the semi-infinite system. The crossover between these
qualitatively different limiting behaviours occurs gradually, however, the
critical temperature and the critical composition exhibit a non-monotonic
dependence on the surface field.Comment: to appear in Europhys.Let
Critical behavior of colloid-polymer mixtures in random porous media
We show that the critical behavior of a colloid-polymer mixture inside a
random porous matrix of quenched hard spheres belongs to the universality class
of the random-field Ising model. We also demonstrate that random-field effects
in colloid-polymer mixtures are surprisingly strong. This makes these systems
attractive candidates to study random-field behavior experimentally.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
- âŠ