8,614 research outputs found

    Coupled Fluctuations near Critical Wetting

    Full text link
    Recent work on the complete wetting transition has emphasized the role played by the coupling of fluctuations of the order parameter at the wall and at the depinning fluid interface. Extending this approach to the wetting transition itself we predict a novel crossover effect associated with the decoupling of fluctuations as the temperature is lowered towards the transition temperature T_W. Using this we are able to reanalyse recent Monte-Carlo simulation studies and extract a value \omega(T_W)=0.8 at T_W=0.9T_C in very good agreement with long standing theoretical predictions.Comment: 4 pages, LaTex, 1 postscript figur

    Critical behavior of colloid-polymer mixtures in random porous media

    Full text link
    We show that the critical behavior of a colloid-polymer mixture inside a random porous matrix of quenched hard spheres belongs to the universality class of the random-field Ising model. We also demonstrate that random-field effects in colloid-polymer mixtures are surprisingly strong. This makes these systems attractive candidates to study random-field behavior experimentally.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Short-time critical dynamics at perfect and non-perfect surface

    Full text link
    We report Monte Carlo simulations of critical dynamics far from equilibrium on a perfect and non-perfect surface in the 3d Ising model. For an ordered initial state, the dynamic relaxation of the surface magnetization, the line magnetization of the defect line, and the corresponding susceptibilities and appropriate cumulant is carefully examined at the ordinary, special and surface phase transitions. The universal dynamic scaling behavior including a dynamic crossover scaling form is identified. The exponent β1\beta_1 of the surface magnetization and β2\beta_2 of the line magnetization are extracted. The impact of the defect line on the surface universality classes is investigated.Comment: 11figure

    Confinement Effects in Antiferromagnets

    Full text link
    Phase equilibrium in confined Ising antiferromagnets was studied as a function of the coupling (v) and a magnetic field (h) at the surfaces, in the presence of an external field H. The ground state properties were calculated exactly for symmetric boundary conditions and nearest-neighbor interactions, and a full zero-temperature phase diagram in the plane v-h was obtained for films with symmetry-preserving surface orientations. The ground-state analysis was extended to the H-T plane using a cluster-variation free energy. The study of the finite-T properties (as a function of v and h) reveals the close interdependence between the surface and finite-size effects and, together with the ground-state phase diagram, provides an integral picture of the confinement in anisotropic antiferromagnets with surfaces that preserve the symmetry of the order parameter.Comment: 10 pages, 8 figures, Accepted in Phys. Rev.

    Pattern Formation in the Inhomogeneous Cooling State of Granular Fluids

    Get PDF
    We present results from comprehensive event-driven (ED) simulations of nonlinear pattern formation in freely-evolving granular gases. In particular, we focus on the the morphologies of density and velocity fields in the inhomogeneous cooling state (ICS). We emphasize the strong analogy between the ICS morphologies and pattern formation in phase ordering systems with a globally conserved order parameter.Comment: 11 pages, 4 figures. to appear in Europhys. Let

    Fluids with quenched disorder: Scaling of the free energy barrier near critical points

    Full text link
    In the context of Monte Carlo simulations, the analysis of the probability distribution PL(m)P_L(m) of the order parameter mm, as obtained in simulation boxes of finite linear extension LL, allows for an easy estimation of the location of the critical point and the critical exponents. For Ising-like systems without quenched disorder, PL(m)P_L(m) becomes scale invariant at the critical point, where it assumes a characteristic bimodal shape featuring two overlapping peaks. In particular, the ratio between the value of PL(m)P_L(m) at the peaks (PL,maxP_{L, max}) and the value at the minimum in-between (PL,minP_{L, min}) becomes LL-independent at criticality. However, for Ising-like systems with quenched random fields, we argue that instead ΔFL:=ln(PL,max/PL,min)Lθ\Delta F_L := \ln (P_{L, max} / P_{L, min}) \propto L^\theta should be observed, where θ>0\theta>0 is the "violation of hyperscaling" exponent. Since θ\theta is substantially non-zero, the scaling of ΔFL\Delta F_L with system size should be easily detectable in simulations. For two fluid models with quenched disorder, ΔFL\Delta F_L versus LL was measured, and the expected scaling was confirmed. This provides further evidence that fluids with quenched disorder belong to the universality class of the random-field Ising model.Comment: sent to J. Phys. Cond. Mat
    corecore